您现在的位置: 首页> 研究主题> 纳米测量

纳米测量

纳米测量的相关文献在1995年到2022年内共计155篇,主要集中在机械、仪表工业、一般工业技术、无线电电子学、电信技术 等领域,其中期刊论文111篇、会议论文20篇、专利文献558631篇;相关期刊64种,包括科技致富向导、计量技术、计量学报等; 相关会议17种,包括2009国防计量测试学术年会、第三届上海纳米科技与产业发展研讨会、中国计量测试学会几何量专业委员会2006年年会等;纳米测量的相关文献由291位作者贡献,包括陈本永、胡小唐、邹自强等。

纳米测量—发文量

期刊论文>

论文:111 占比:0.02%

会议论文>

论文:20 占比:0.00%

专利文献>

论文:558631 占比:99.98%

总计:558762篇

纳米测量—发文趋势图

纳米测量

-研究学者

  • 陈本永
  • 胡小唐
  • 邹自强
  • 李达成
  • 余文新
  • 吴昭同
  • 朱若谷
  • 徐毅
  • 王林
  • 范光照
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 李强; 任冬梅; 兰一兵; 李华丰; 万宇
    • 摘要: 为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。
    • 夏豪杰; 谷容睿; 潘成亮; 赵会宁
    • 摘要: 激光干涉测量技术作为超精密测量的重要手段,为实现亚纳米级测量分辨力,通常对干涉周期信号进行数百倍甚至上千倍的插值细分,引入分辨力有效性问题.本文基于涡旋光束的螺旋相位特性,搭建高精度共轭涡旋光干涉位移测量结构,将被测直线位移量与干涉图案绕中心旋转角度建立线性传感关系.信号采集与处理中基于干涉信号特点,结合高速光电探测器进行干涉图案周期计数与相机进行低速干涉图案图像细分,对干涉图案自身进行空间等角度细分,有效降低后继周期信号的细分倍数并提高测量分辨力可靠性,以保证涡旋光干涉信号实时处理系统的亚纳米量级测量精度.搭建涡旋光束拓扑荷数为4的干涉测量实验测试系统,理论上干涉图案旋转1°对应的被测位移量为0.88 nm,设计基于LabVIEW的信号实时采集和处理系统并进行测量分辨力测试与误差分析,在实验室条件下分辨力优于0.5 nm.
    • 王合文; 吴玉梅; 郑方燕; 但敏; 樊星辰
    • 摘要: In order to quantify the influences on measurement precision caused by assembly parameters,the gap d0 and effective overlap area variation ΔS between the fixed ruler and the moving ruler are employed as independent variables to build mathematical models for measurement precision analysis based on the principles of nanometer time-grating sensors.Second harmonics errors are deduced in theory and tranced back in terms of unequal amplitude and phase deviation for two channels of standing waves when the moving ruler is not parallel to yz-plane or deviate from yz-plane.Experiment results show that the original errors for one pitch decrease from 4.86 μm to 0.84 μm by adjusting the assembly parameters of the moving ruler in the yz-plane and xy-plane,which demonstrates that second harmonics error is caused by un-parallel to yz-plane or deviation from yz-plane for moving ruler.The peak-to-peak value of the measurement error is 400 nm within 200 mm measurement range.The proposed theoretical analysis is valid by the experimental results,and provide strong supporting for optimizing the sensor's structure parameters and improving experimental methods,which is very valuable for improving the measurement precision of nanometer time-grating sensor as reliable theory.%为了解析安装参数与测量精度的关系,根据纳米时栅的基本测量原理,构建出与动、定尺间距d0和正对面积变化量ΔS相关的数学模型.通过理论推导,分析了动尺在yz平面倾斜、xy平面偏转时会导致两路驻波幅值不等、相位偏移,从而给测量结果带来二次误差.实验结果表明通过调整动尺在yz平面与xy平面上的安装,对极内原始误差由4.86μm降低至0.84μm,证明动尺在yz平面倾斜、xy平面偏转为产生二次误差的主要原因.在行程200mm测量范围内,传感器误差峰峰值为400nm.实验结果验证了理论分析的正确性,该分析为传感器结构参数优化和实验方法的改进提供了有力的支撑,为进一步提升传感器精度提供了可靠的理论依据.
    • 张文晓
    • 摘要: 本文根据原子力显微镜(AFM)的工作原理,针对生物细胞研究的相关实验教学课程的基本内容结构和教学目的,探讨了AFM在实际教学中的应用,列举了AFM获取的不同细胞的成像及相关信息。AFM在生物细胞技术中的应用教学显示,相比传统的光学显微镜,它能使学生更直观的观察细胞的形貌,详细的掌握不同细胞的大小、高度、形状等多方面信息。促进学生对课程的学习兴趣,同时又帮助学生加强对生物细胞的认知和理解,从而为学生进一步研究细胞的亚结构、力学特性、受药情况等打下良好的基础。
    • 陈修国; 袁奎; 杜卫超; 陈军; 江浩; 张传维; 刘世元
    • 摘要: 为了实现有效的工艺监控,在批量化纳米制造中对纳米结构的关键尺寸等几何参数进行快速、低成本、非破坏性的精确测量具有十分重要的意义。光学散射仪目前已经发展成为批量化纳米制造中纳米结构几何参数在线测量的一种重要手段。传统光学散射测量技术只能获得光斑照射区内待测参数的平均值,而对小于光斑照射区内样品的微小变化难以准确分析。此外,由于其只能进行单点测试,必须要移动样品台进行扫描才能获得大面积区域内待测参数的分布信息,从而严重影响测试效率。为此,本文将传统光学散射测量技术与显微成像技术相结合,提出利用Mueller矩阵成像椭偏仪实现纳米结构几何参数的大面积快速准确测量。 Mueller矩阵成像椭偏仪具有传统Mueller矩阵椭偏仪测量信息全、光谱灵敏度高的优势,同时又有显微成像技术高空间分辨率的优点,有望为批量化纳米制造中纳米结构几何参数提供一种大面积、快速、低成本、非破坏性的精确测量新途径。%In order to achieve effective process control, the fast, inexpensive, nondestructive and accurate nanoscale feature measurements are extremely useful in high-volume nanomanufacturing. The optical scatterometry has currently be-come one of the important approaches for in-line metrology of geometrical parameters of nanostructures in high-volume nanomanufacturing due to its high throughput, low cost, and minimal sample damage. Conventional scatterometry techniques can only obtain the mean geometrical parameter values located in the illumination spot, but cannot ac-quire the microscopic variation of geometrical parameters less than the illumination region. In addition, conventional scatterometry techniques can only perform monospot test. Therefore, the sample stage must be scanned spot by spot in order to obtain the distribution of geometrical parameters in a large area. Consequently, the final test efficiency will be greatly reduced. Accordingly, in this paper, we combine conventional scatterometry with imaging techniques and adopt the Mueller matrix imaging ellipsometry (MMIE) for fast, large-scale and accurate nanostructure metrology. A spectroscopic Mueller matrix imaging ellipsometer is developed in our laboratory by substituting a complementary metal oxide semiconductor camera for the spectrometer in a previously developed dual rotating-compensator Mueller matrix ellipsometer and by placing a telecentric lens as an imaging lens in the polarization state analyzer arm of the ellipsometer. The light wavelengths in the developed imaging ellipsometer are scanned in a range of 400–700 nm by using a monochromator. The spectroscopic Mueller matrix imaging ellipsometer is then used for measuring a typical Si grating template used in nanoimprint lithography. The measurement results indicate that the developed instrument has a measurement accuracy of better than 0.05 for all the Mueller matrix elements in both the whole image and the whole spectral range. The three-dimensional microscopic maps of geometrical parameters of the Si grating template over a large area with pixel-sized lateral resolution are then reconstructed from the collected spectral imaging Mueller matrices by solving an inverse diffraction problem. The MMIE-measured results that are extracted from Mueller matrix spectra collected by a single pixel of the camera are in good agreement with those measured by a scanning electron microscope and the conventional Mueller matrix ellipsometer. The MMIE that combines the great power of conventional Mueller matrix ellipsometry with the high spatial resolution of optical microscopy is thus expected to be a powerful tool for large-scale nanostructure metrology in future high-volume nanomanufacturing.
    • 陈哲敏; 胡朋兵; 孟庆强
    • 摘要: 本文以聚苯乙烯纳米颗粒作为测量对象,分别采用最为常见的扫描电子显微镜法(SEM)和动态光散射法(DLS)测量其粒径.结果表明:电子显微镜法可观察颗粒形貌及结构,但测量误差偏大;动态光散射法可精确测量颗粒粒径及其分布状态.分析讨论了这两种测量方法的优缺点,对纳米颗粒测量具有重要的指导作用.
    • 黄沛; 郑方燕; 冯济琴; 陈自然
    • 摘要: Nanometer time grating makes measurement with moving reference frame constructed by alternating elec⁃tric field. Precision of the excitation directly affects the uniform motion of the reference frame,and thus influences the accuracy of measurement. In order to meet the requirement of high precision excitation,a new signal source adopting closed loop control was designed. FPGA was used to complete overall control,including acquisition con⁃trol,data processing and waveform data generating. Signal generating circuit and feedback circuit were constructed with 16-bit D/A and A/D converters,therefore the precise control of signals was improved a lot. The test results show that the precision of the signal amplitude is 0.01%and the phase precision is 0.1%,and the original precision of nanometer time grating was improved from 1.4μm to 0.9μm.%纳米时栅利用正交变化电场构建的运动参考系进行测量,激励信号精度直接影响运动参考系匀速性,进而影响测量精度。针对纳米时栅需要高精度激励信号的要求,设计了一种采用闭环控制结构的高精度激励信号源,该信号源采用单片FPGA实现总体控制,完成采集控制、数据处理和波形数据产生等功能,利用16位高精度数据转换器构建信号发生电路及反馈电路,保证了对信号的精确控制。测试结果表明:输出正弦信号幅值精度为0.01%,相位精度为0.1%,并将纳米时栅原始精度从1.4μm提高至0.9μm。
    • 许卓; 杨杰; 王成; 陈东红; 丑修建
    • 摘要: Aiming at the difficulty of the large range nano displacement precision measurement,a new type nanometer time grating sensor is proposed. As for submicro precision of large range,high-precision displacement sensor,consistent manufacture in macro-scale range periodic structure of unit are the key to ensure reliability and high precision measurement of displacement sensor. Aiming at problem raised above,a new high-precision automatic exposure splicing technology is adopted,fabricate and achieve large range scale pattern transfer,and combined with micro-nano fabrication methods,the sub-micron level precision time grating sensor manufacturing is realized. The experimental results show that the prototype can work as expected,and peak of measurement error is within 500 nm.%针对解决大量程纳米位移精度测量难度大的问题,提出了新型纳米时栅传感器。就大量程、高精度位移传感器的亚微米精度加工而言,宏观尺度范围内周期性结构单元一致性制造是保证位移传感器可靠性和高精度测量的关键所在。对上述提出的问题,采用高精度自动拼接曝光技术加工并实现了大量程标尺的图形转移,结合微纳加工方式实现时栅传感器亚微米级精度的制造。通过实验验证所加工出的样机能够达到预期目标,并且测量误差峰值在500 nm以内。
    • 李晓梅; 徐长山; 许智; 白雪冬
    • 摘要: In order to meet the demand of manipulation and physical measurement of an individual nanostructure ,a scanning probe microscope had been built inside a transmission electron microscope , by w hich nanomanipulation ,physical measurement and in‐situ structural characterization could be re‐alized .This instrument was powerful in a way that it could directly correlate the atomic‐scale struc‐ture with the unique properties of low‐dimensional materials .%为了满足单个纳米结构的操纵和物理测量需求,设计制作了透射电子显微镜内置扫描探针装置,实现了纳米操纵、物性测量和原位结构表征的功能,从而建立起低维材料独特性质与其本征结构的一一对应关系。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号