首页> 外文OA文献 >Modeling and Simulation of Non-Classical MOSFETs for HP and LSTP Applications at 20 nm Gate Length
【2h】

Modeling and Simulation of Non-Classical MOSFETs for HP and LSTP Applications at 20 nm Gate Length

机译:栅极长度为20 nm时用于HP和LSTP应用的非经典MOSFET的建模和仿真

摘要

The endless miniaturization of Si-based Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) has the key for urging the electronic uprising. How-ever, scaling of the channel length is the enormous challenge to preserve the per-formance in terms of speed, power, and electrostatic integrity at each technologynodes. From the commencement of CMOS scaling, the simple planar MOSFETs are not up to the performance because of the increased SCEs and leakage cur-rent. To slacken the SCEs and leakage currents, different types of structures i.e.Multi-Gate MOSFETs like double-gate (DG), triple-gate (TG), FinFETs have in-troduced in the literature. Fully Depleted (FD) Silicon-On-Insulator (SOI) devices have shown potentially significant scalability when compared to bulk MOSFETs.In spite of, the introduced structures in literature are not offering concurrent SCE repression and improved circuit implementation. And some involve tangled processing not suggested for smooth integration into the here and now CMOS technology. The scaling capability of nanoscale ultra-thin (UT) silicon directly on insula-tor (SDOI) single gate (SG) and DG MOSFETs is investigated to overcome SCEs and improve power consumption. Dependence of underlap length on drain cur-rent, Subthreshold Slope (SS), transition frequency, delay, Energy Delay Product (EDP), etc. is studied for DG MOSFET and FinFET, to find the optimum value of underlap length for low power consumption. DG MOSFET is an excellent can-didate for high current drivability whereas FinFET provides better immunity toleakage currents and hence improved delay, EDP over DG MOSFET. Furthermore,FinFET provides a high value of transition frequency which indicates that it is faster than DG MOSFET. III-V channel materials are proposed for the discussed two structures to improve the On current at the same integration density as in Si-based channel FETs. The role of geometry parameters in sub 20 nm SOI Fin-FET is studied to find the optimum value of height and width of Fin for analogand RF circuit design. This work provides the influence of the height and width of Fin disparity on different performance matrices that comprises of static as well as dynamic figures of merit (FoMs). Based on the Aspect Ratio (WF in/HF in),the device can be divided into three parts, i.e., FinFET, Tri-gate, and PlanarMOSFET.CMOS for SG and DG is made using the combination of NMOS and PMOS by engineering the work function in order to have same threshold voltage for N-channel and P-channel MOS. The inverter is without doubt the core of all digital applications. Once its operation and characteristics are understood with clarity,designing more complicated structures such as NAND gates, multipliers, adders, and microprocessors are significantly explained. The performance of CMOS is articulated. All the dimensions are according to the ITRS 2013 datasheet. Thework provided here is requisited to give the purpose for forward experimental in-vestigation.
机译:硅基金属氧化物半导体场效应晶体管(MOSFET)的无穷小型化是推动电子起义的关键。但是,在每个技术节点上,要保持性能的速度,功率和静电完整性,通道长度的缩放是一项巨大的挑战。从CMOS缩放开始,由于增加的SCE和漏电流,简单的平面MOSFET无法达到性能。为了减轻SCE和泄漏电流,已在文献中引入了不同类型的结构,即双栅极(DG),三栅极(TG)等多栅极MOSFET。与大容量MOSFET相比,全耗尽(FD)绝缘体上硅(SOI)器件显示出潜在的显着可扩展性。尽管如此,文献中介绍的结构并未提供同时的SCE抑制和改进的电路实现。某些涉及复杂处理,不建议将其平滑集成到现在和现在的CMOS技术中。研究了直接在绝缘体(SDOI)单栅极(SG)和DG MOSFET上的纳米级超薄(UT)硅的缩放能力,以克服SCE并改善功耗。研究了DG MOSFET和FinFET的下重叠长度与漏极电流,亚阈值斜率(SS),过渡频率,延迟,能量延迟乘积(EDP)等的关系,以找到低功耗下重叠长度的最佳值。 DG MOSFET是高电流驱动能力的极佳候选者,而FinFET具有比DG MOSFET更好的抗泄漏电流抗扰度,因此改善了EDP延迟。此外,FinFET提供了很高的过渡频率值,这表明它比DG MOSFET快。提出了III-V沟道材料用于所讨论的两种结构,以在与基于Si的沟道FET中相同的集成密度下改善导通电流。研究了几何参数在20 nm以下SOI Fin-FET中的作用,以找到用于模拟和RF电路设计的Fin高度和宽度的最佳值。这项工作提供了Fin视差的高度和宽度对不同性能矩阵的影响,这些性能矩阵包括静态和动态品质因数(FoM)。根据长宽比(WF in / HF in),该器件可分为FinFET,Tri-gate和PlanarMOSFET三部分。用于SG和DG的CMOS是通过将NMOS和PMOS结合使用而设计的。功函数以使N沟道和P沟道MOS具有相同的阈值电压。毫无疑问,逆变器是所有数字应用的核心。一旦清楚地了解了它的操作和特性,就将对设计更复杂的结构(例如与非门,乘法器,加法器和微处理器)进行重大说明。阐明了CMOS的性能。所有尺寸均依据ITRS 2013数据表。此处提供的工作是进行正向实验研究的目的所必需的。

著录项

  • 作者

    Singh Devender;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号