...
首页> 外文期刊>Methods: A Companion to Methods in Enzymology >Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy
【24h】

Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy

机译:使用自旋阱通过电子顺磁共振(EPR)光谱检测活细胞中超氧化物的产生

获取原文
获取原文并翻译 | 示例
           

摘要

Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. (C) 2016 Elsevier Inc. All rights reserved.
机译:四十多年来,对活细胞产生的超氧化物的检测一直是生物学中的一项持续挑战。已经提出了各种方法来解决这个问题,其中包括用环状硝酮与EPR光谱耦合的自旋俘获,EPR光谱是检测自由基的金标准。该技术基于超氧化物向反磁性环硝酮的亲核加成,称为自旋陷阱,并形成自旋加合物,即具有特征性EPR光谱的持久自由基。自旋陷阱在活细胞中的首次应用可以追溯到1979年。从那时起,自旋陷阱的结构,EPR方法以及包括适当对照的实验设计都取得了相当大的改进。在这里,我们将专注于自旋阱/ EPR技术的技术方面,描述近期的突破,固有的局限性和潜在的缺陷。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号