首页> 外文会议>International Conference on Metallurgical Coatings and Thin Films >Tribological behaviour of thin a-C and a-C:H films with different topographic structure under rotating and oscillating motion for dry lubrication
【24h】

Tribological behaviour of thin a-C and a-C:H films with different topographic structure under rotating and oscillating motion for dry lubrication

机译:旋转和振动运动下具有不同地形结构的薄A-C和A-C和A-C和A-C:H薄膜的摩擦学行为

获取原文

摘要

Fluid lubrication can hardly be realized for microparts and MEMS components. Therefore, coatings with low friction will be applied. Due to the small size of these parts, only nanofilms are applicable. For further improvement of the microtribological behaviour, we investigated the influence of a geometrical well-defined surface structure. For standard characterization, pin-on-disc tests were performed. Beside the study of the friction coefficient under rotating motion, also, the microtribological behaviour of an areal microcontact was studied. A variation of width to spacing of concentric circles for the pin-on-disc test showed the existence of an optimum contact area resulting in minimized friction coefficients. Microstructures of different shape and depth led also to a reduction of friction. In this case, the resulting depth of the structures played a major role in tribological optimization. Shallow structures (d: 1.5 Am) showed only slight differences in the friction coefficient, while deeper structures (d: 4.5 Am) led to a significant reduction. It turned out that the main effect of reduction was dependent on the lateral size of these structures. Besides investigations on the microtribological behaviour under single asperity contact based on nanoindentation, we used an oscillating test for microstructured areal microprobes. First, investigations on silicon micro-samples sliding against a silicon counterpart showed a linear dependence of sliding distance and resulting wear. Also, a dependence of the friction coefficient on the roughness was observed. Therefore, different roughnesses (polished, Ra=50 nm, 200 nm) were investigated. D 2004 Elsevier B.V. All rights reserved.
机译:对于微粉和MEMS组分,几乎不能实现流体润滑。因此,将应用具有低摩擦力的涂层。由于这些部件的尺寸小,仅适用纳米丝。为了进一步改善微量化行为,我们研究了几何明确定义的表面结构的影响。对于标准表征,执行引脚盘测试。除了在旋转运动下摩擦系数的研究之外,还研究了面部微接触的微量纤维行为。针对盘式测试的同心圆的宽度的变化显示出存在最佳接触区域,导致最小化的摩擦系数。不同形状和深度LED的微观结构也降低了摩擦。在这种情况下,所得到的结构深度在摩擦学优化中发挥了重要作用。浅结构(D:1.5AM)显示摩擦系数的略有差异,而深层结构(D:4.5AM)导致显着减少。事实证明,减少的主要效果取决于这些结构的横向尺寸。除了基于纳米狭窄的单根粗糙接触下对微曲线行为的研究,我们使用了对微结构化的区域微生物体进行振荡测试。首先,对硅对应物滑动的硅微型样品的研究显示了滑动距离和所得到的磨损的线性依赖性。而且,观察到摩擦系数对粗糙度的依赖性。因此,研究了不同的粗糙度(抛光,Ra = 50nm,200nm)。 D 2004 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号