...
首页> 外文期刊>Numerical Methods for Partial Differential Equations: An International Journal >A High Order Accurate Numerical Method for Solving Two-Dimensional Dual-Phase-Lagging Equation with Temperature Jump Boundary Condition in Nanoheat Conduction
【24h】

A High Order Accurate Numerical Method for Solving Two-Dimensional Dual-Phase-Lagging Equation with Temperature Jump Boundary Condition in Nanoheat Conduction

机译:纳米导热中具有温度跃迁边界条件的二维双相滞后方程的高阶精确数值解法

获取原文
获取原文并翻译 | 示例
           

摘要

Dual-phase-lagging (DPL) equation with temperature jump boundary condition (Robin's boundary condition) shows promising for analyzing nanoheat conduction. For solving it, development of higher-order accurate and unconditionally stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be very small at nanoscale, using a higher-order accurate scheme will allow us to choose a relative coarse grid and obtain a reasonable solution. For this purpose, recently we have presented a higher-order accurate and unconditionally stable compact finite difference scheme for solving one-dimensional DPL equation with temperature jump boundary condition. In this article, we extend our study to a two-dimensional case and develop a fourth-order accurate compact finite difference method in space coupled with the Crank-Nicolson method in time, where the Robin's boundary condition is approximated using a third-order accurate compact method. The overall scheme is proved to be unconditionally stable and convergent with the convergence rate of fourth-order in space and second-order in time. Numerical errors and convergence rates of the solution are tested by two examples. Numerical results coincide with the theoretical analysis. (C) 2015 Wiley Periodicals, Inc.
机译:具有温度跃迁边界条件(Robin边界条件)的双相滞后(DPL)方程显示出有望用于分析纳米热传导。为了解决该问题,重要的是开发高阶精确且无条件稳定(对网格比率没有限制)的数值方案。由于网格尺寸可能在纳米尺度上很小,因此使用高阶精确方案将使我们能够选择相对粗糙的网格并获得合理的解决方案。为此,最近我们提出了一种高阶精确无条件稳定紧致有限差分方案,用于求解带温度跃变边界条件的一维DPL方程。在本文中,我们将研究扩展到二维情况,并及时开发出一种四阶精确的紧致有限差分方法和Crank-Nicolson方法,其中罗宾边界条件使用三阶精确方法进行近似紧凑的方法。证明了该总体方案是无条件稳定的,并且随着时间在空间上收敛于四阶并且在时间上收敛于二阶。通过两个示例测试了解决方案的数值误差和收敛速度。数值结果与理论分析相吻合。 (C)2015威利期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号