...
首页> 外文期刊>ACS applied materials & interfaces >Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations
【24h】

Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations

机译:电催化锌复合材料作为染料敏化太阳能电池的高效对电极:电化学性能和密度泛函理论计算的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Highly efficient zinc compounds (Zn3N2, ZnO, ZnS, and ZnSe) have been investigated as low-cost electrocatalysts for the counter electrodes (CE) of dye-sensitized solar cells (DSSCs). Among them, Zn3N2 and ZnSe are introduced for the first time in DSSCs. The zinc compounds were separately mixed with a conducting binder, poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thereby four composite films of Zn3N2/PEDOT:PSS, ZnO/PEDOT:PSS, ZnS/PEDOT:PSS, and ZnSe/PEDOT:PSS were coated on the tin-doped indium oxide (ITO) substrates through a simple drop-coating process. In the composite film, nanoparticles of the zinc compound form active sites for the electrocatalytic reduction of triiodide ions, and PEDOT:PSS provides a continuous conductive matrix for fast electron transfer. By varying the weight percentage (5-20 wt %) of a zinc compound with respect to the weight of the PEDOT:PSS, the optimized concentration of a zinc compound was found to be 10 wt % in all four cases, based on the photovoltaic performances of the corresponding DSSCs. At this concentration (10 wt %), the composites films with Zn3N2 (Zn3N2-10), ZnO (ZnO-10), ZnS (ZnS-10), and ZnSe (ZnSe-10) rendered, for their DSSCs, power conversion efficiencies (eta) of 8.73%, 7.54%, 7.40%, and 8.13%, respectively. The difference in the power conversion efficiency is explained based on the electrocatalytic abilities of those composite films as determined by cyclic voltammetry (CV), Tafel polarization plots, and electrochemical impedance spectroscopy (EIS) techniques. The energy band gaps of the zinc compounds, obtained by density functional theory (DFT) calculations, were used to explain the electrocatalytic behaviors of the compounds. Among all the zinc-based composites, the one with Zn3N2-10 showed the best electrocatalytic ability and thereby rendered for its DSSC the highest eta of 8.73%, which is even higher than that of the cell with the traditional Pt CE (8.50%). Therefore, Zn3N2 can be considered as a promising inexpensive electrocatalyst to replace the rare and expensive Pt.
机译:高效锌化合物(Zn3N2,ZnO,ZnS和ZnSe)已作为染料敏化太阳能电池(DSSC)的对电极(CE)的低成本电催化剂进行了研究。其中,Zn3N2和ZnSe首次在DSSC中引入。锌化合物分别与导电粘合剂,聚(3,4-乙烯-二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)混合,从而形成Zn3N2 / PEDOT:PSS,ZnO / PEDOT:PSS的四个复合膜,通过简单的滴涂工艺将ZnS / PEDOT:PSS和ZnSe / PEDOT:PSS涂覆在掺锡的氧化铟(ITO)衬底上。在复合膜中,锌化合物的纳米颗粒形成用于电催化还原三碘离子的活性位点,而PEDOT:PSS为快速的电子转移提供了连续的导电基质。通过改变锌化合物相对于PEDOT:PSS重量的重量百分比(5-20​​ wt%),发现在所有四种情况下,基于光伏技术,锌化合物的最佳浓度均为10 wt%相应DSSC的性能。在此浓度(10 wt%)下,具有Zn3N2(Zn3N2-10),ZnO(ZnO-10),ZnS(ZnS-10)和ZnSe(ZnSe-10)的复合膜的DSSC功率转换效率(eta)分别为8.73%,7.54%,7.40%和8.13%。基于通过循环伏安法(CV),Tafel极化图和电化学阻抗谱(EIS)技术确定的复合膜的电催化能力,解释了功率转换效率的差异。通过密度泛函理论(DFT)计算获得的锌化合物的能带隙用于解释化合物的电催化行为。在所有锌基复合材料中,具有Zn3N2-10的复合材料表现出最佳的电催化性能,从而使其DSSC的最大eta值达到8.73%,甚至高于传统Pt CE电池的eta(8.50%)。 。因此,Zn3N2可以被视为替代稀有且昂贵的Pt的有前途的廉价电催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号