...
首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >Direct comparison of time-resolved terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors
【24h】

Direct comparison of time-resolved terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors

机译:直接比较时间分辨的太赫兹光谱和Hall Van der PauW方法,用于测量散装半导体中的载波电导率和移动性

获取原文
获取原文并翻译 | 示例
           

摘要

Charge carrier conductivity and mobility for various semiconductor wafers and crystals were measured by ultrafast above bandgap, optically excited time-resolved terahertz spectroscopy (TRTS) and Hall Van der Pauw contact methods to directly compare these approaches and validate the use of the non-contact optical approach for future materials and in situ device analyses. Undoped and doped silicon (Si) wafers with resistances varying over 6 orders of magnitude were selected as model systems because contact Hall measurements are reliably made on this material. Conductivity and mobility obtained at room temperature by terahertz transmission and TRTS methods yield the sum of electron and hole mobility which agree very well with either directly measured or literature values for corresponding atomic and photodoping densities. Careful evaluation of the optically generated TRTS frequency-dependent conductivity also shows it is dominated by induced free carrier absorption rather than small probe pulse phase shifts, which is commonly ascribed to changes in the complex conductivity from sample morphology and evaluation of carrier mobility by applying Drude scattering models. Thus, in this work, the real-valued, frequency-averaged conductivity was used to extract sample mobility without application of models. Examinations of germanium (Ge), gallium arsenide (GaAs), gallium phosphide (GaP), and zinc telluride (ZnTe) samples were also made to demonstrate the general applicability of the TRTS method, even for materials that do not reliably make good contacts (e.g., GaAs, GaP, ZnTe). For these cases, values for the sum of the electron and hole mobility also compare very favorably to measured or available published data
机译:通过超微向上的带隙测量各种半导体晶片和晶体的电荷载波电导率和晶体,光学激发的时间分辨的太赫兹光谱(TRTS)和Hall Van der Pauw接触方法,直接比较这些方法并验证使用非接触光学的使用未来材料和原位设备分析方法。选择未掺杂的和掺杂的硅(Si)晶片,其电阻变化超过6个数量级变化为模型系统,因为在该材料上可靠地制成了接触式霍尔测量。通过太赫兹透射和TRTS方法在室温下获得的电导率和移动性产生电子和空穴迁移率的总和,其与直接测量或对应的原子和光刻密度的文献值非常好。仔细评估光学产生的TRTS频率依赖性电导率也表明它是由诱导的自由载体吸收而不是小探针脉冲相移,其通常归因于通过施加磨牙的样本形态和载流子移动性的复杂电导率的变化。散射模型。因此,在这项工作中,使用实际值的频率平均电导率来提取样品移动性而不应用模型。锗(Ge),砷化镓(GaAs),磷化镓(间隙)和碲化锌(ZnTe)样品的检查,以证明TRTS方法的一般适用性,即使对于不可用于不可挽回的良好接触的材料(例如,GaAs,Gap,ZnTe)。对于这些情况,电子和空穴移动性总和的值也非常有利地比较测量或可用的已发布数据

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号