首页> 外文期刊>Diamond and Related Materials >Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups
【24h】

Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups

机译:基于反应力场基基原子模拟,用于研究氧化物基团官能化石墨烯的断裂韧性

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this article was to study the effect of oxide functionalisation on the fracture toughness of bicrystalline graphene. Molecular dynamics based simulations in conjunction with reactive force field were performed to study the fracture toughness of functionalised bicrystal of graphene. Separate studies were performed with hydroxyl and epoxide functionalisation, and later on the same simulations were extended over graphene oxide (GO) as a whole. Failure morphologies depict that epoxide groups tend to boost the fracture toughness, via altering the failure path and transforming the fracture mode from mode-I to mode-II. In addition to the transformation, epoxide-to-ether conversion also played significant role in enhancing the fracture toughness of bicrystalline graphene. On the other hand, steric hindrance exhibited by the hydroxyl group mitigates the fracture toughness of GO. Overall, certain spatial sandwich configurations of epoxide groups concluded an enhanced fracture toughness for bicrystalline graphene; which further opens new avenues for the application of these graphene sheets in nanodevices, nanomembranes and nanocomposites.
机译:本文的目的是研究氧化物官能化对双晶石墨烯的破裂韧性的影响。进行与反应力场的基于分子动力学的模拟,以研究石墨烯的官能化双晶体的断裂韧性。用羟基和环氧化物官能化进行单独的研究,后来在相同的模拟上延伸以整体氧化石墨烯(GO)。失败形态描绘了环氧化物基团倾向于通过改变破坏路径并从模式-i转变为模式-II的裂缝模式来提高断裂韧性。除了转化外,环氧化物 - 醚转化还在增强双晶石墨烯的断裂韧性方面发挥了重要作用。另一方面,羟基表现出的空间障碍降低了裂缝韧性。总体而言,环氧基团的某些空间夹层配置总结了Bicrystalline石墨烯的增强骨折韧性;进一步开启了用于在纳米型,纳米膜和纳米复合材料中施加这些石墨烯片的新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号