首页> 外文期刊>Biomechanics and modeling in mechanobiology >Kinematics framework optimized for deformation, growth, and remodeling in vascular organs
【24h】

Kinematics framework optimized for deformation, growth, and remodeling in vascular organs

机译:运动学框架针对血管器官的变形,生长和重塑进行了优化

获取原文
获取原文并翻译 | 示例
       

摘要

A basic tenant of constitutive theory is that phenomenological relations can be derivable from phenomenological behavior or material tests; and yet, conventional representation formulas, such as those of Rivlin and Fung, fail in this regard because of the choice of kinematical variables. Granted, with these representation formulas a particular constitutive relation may be guessed that fits data, but if the relation is non-unique and cannot be derived de novo from actual and/or hypothetical tests, then such a relation is indeterminable. The representation formula of Rivlin is indeterminable because of excessive covariance or coalignment in the kinematical variables. The representation formula of Fung is indeterminable because the incompressibility constraint is not utilized to reduce the kinematical variables a priori. The proposed kinematics framework succeeds in achieving determinability for hyperelastic materials because, primarily, the kinematical variables have minimal coalignment and dilatation and distortion are separated. Determinability is discussed and demonstrated in the context of hyperelasticity. However, any representation formula, whether it is for visco-elasticity or remodeling or etcetera, will be indeterminable when kinematical variables are highly coaligned and/or are subject to a non-reducible constraint. In other words, conventional kinematical frameworks are non-starters for experimentally determining constitutive representations for soft tissues. For the sake of determinability and/or validity of continuum models of vascular tissue, the proposed framework is needed. Moreover, this framework is optimized to simplify the balance equations for tubular structures.
机译:本构理论的一个基本承租人是,现象学关系可以从现象学行为或物质检验中得出。然而,由于选择了运动学变量,传统的表示公式(例如Rivlin和Fung的公式)在这方面失败了。当然,利用这些表示公式,可以猜出适合数据的特定本构关系,但是如果该关系是非唯一的,并且不能从实际和/或假设检验中重新得出,则这种关系是不确定的。 Rivlin的表示公式是不确定的,因为运动变量中的协方差或对齐方式过多。 Fung的表示公式是不确定的,因为不可压缩性约束没有被用于先验地减少运动学变量。所提出的运动学框架成功地实现了超弹性材料的可确定性,因为主要是运动学变量具有最小的共对准性,并且膨胀和变形是分开的。在超弹性的背景下讨论并证明了可确定性。但是,当运动学变量高度一致和/或受到不可简化的约束时,无论是用于粘弹性,重塑还是其他形式的表示公式都是不确定的。换句话说,常规的运动学框架对于通过实验确定软组织的本构表示是无法启动的。为了确定血管组织连续模型的可确定性和/或有效性,需要提出的框架。此外,优化了该框架以简化管状结构的平衡方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号