...
首页> 外文期刊>Progress in photovoltaics >100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells
【24h】

100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells

机译:用于高效GaAs太阳能电池的100周期,1.23 eV带隙InGaAs / GaAsP量子阱:面向电流匹配的Ge基串联电池

获取原文
获取原文并翻译 | 示例
           

摘要

Major challenges for InGaAs/GaAsP multiple quantum well (MQW) solar cells include both the difficulty in designing suitable structures and, because of the strain-balancing requirement, growing high-quality crystals. The present paper proposes a comprehensive design principle for MQWs that overcomes the trade-off between light absorption and carrier transport that is based, in particular, on a systematical investigation of GaAsP barrier effects on carrier dynamics that occur for various barrier widths and heights. The fundamental strategies related to structure optimization are as follows: (i) acknowledging that InGaAs wells should be thinner and deeper for a given bandgap to achieve both a higher absorption coefficient for 1e-1hh transitions and a lower compressive strain accumulation;;(ii) understanding that GaAs interlayers with thicknesses of just a few nanometers effectively extend the absorption edge without additional compressive strain and suppress lattice relaxation during growth;;and (iii) understanding that GaAsP barriers should be thinner than 3 nm to facilitate tunneling transport and that their phosphorus content should be minimized while avoiding detrimental lattice relaxation. After structural optimization of 1.23-eV bandgap quantum wells, a cell with 100-period In_(0.30)GaAs(3.5 nm)/GaAs(2.7 nm)/GaAsP_(0.40)(3.0 nm) MQWs exhibited significantly improved performance, showing 16.2% AM 1.5 efficiency without an anti-reflection coating, and a 70% internal quantum efficiency beyond the GaAs band edge. When compared with the GaAs control cell, the optimized cell showed an absolute enhancement in AM 1.5 efficiency, and 1.22 times higher efficiency with 38% current enhancement with an AM 1.5 cut-off using a 665-nm long-pass filter, thus indicating the strong potential of MQW cells in Ge-based 3-J tandem devices.
机译:InGaAs / GaAsP多量子阱(MQW)太阳能电池的主要挑战包括设计合适结构的困难以及由于应变平衡的要求而产生的高质量晶体。本文提出了一种用于MQW的综合设计原理,该原理克服了光吸收和载流子传输之间的折衷,尤其是基于系统研究GaAsP势垒对各种势垒宽度和高度发生的载流子动力学的影响。与结构优化有关的基本策略如下:(i)确认对于给定的带隙,InGaAs阱应更薄更深,以实现1e-1hh跃迁的较高吸收系数和较低的压缩应变积累;;(ii)认识到厚度仅为几纳米的GaAs夹层有效地扩展了吸收边缘而没有额外的压缩应变并抑制了生长过程中的晶格弛豫;并且(iii)认识到GaAsP势垒应小于3 nm以便于隧穿传输及其磷含量应减至最小,同时避免有害的晶格松弛。在对1.23-eV带隙量子阱进行结构优化后,具有100周期In_(0.30)GaAs(3.5 nm)/ GaAs(2.7 nm)/ GaAsP_(0.40)(3.0 nm)MQW的电池的性能显着提高,显示16.2%无需增透膜的AM 1.5效率,以及超过GaAs频带边缘的70%内部量子效率。与GaAs对照电池相比,优化后的电池在AM 1.5效率上有绝对的提高,在使用665 nm长通滤波器截止到AM 1.5时,效率提高了1.22倍,电流提高了38%。基于Ge的3J串联器件中MQW电池的强大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号