首页> 外文期刊>Applied Physics Letters >Engineering micro-supercapacitors of graphene nanowalls/Ni heterostructure based on microfabrication technology
【24h】

Engineering micro-supercapacitors of graphene nanowalls/Ni heterostructure based on microfabrication technology

机译:基于微细加工技术的石墨烯纳米壁/镍异质结构的工程超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Heterostructure of graphene nanowalls (GNW) supported Ni thin-layer was fabricated to form an on-chip pseudocapacitor via a standard microelectromechanical system process. Beyond a high-rate capability of the micro-supercapacitors, a large specific energy density of 2.1 mWh cm~(-3) and power density up to 5.91 W cm~(-3) have been achieved, which are two orders of magnitude higher than those commercial electrolytic capacitors and thin-film batteries, respectively. Rational analysis revealed a rapid GNW growth originated from the Pt current collector embedment by catalyzing hydrocarbon dissociating. The unique concept in our design includes that Ni was evaporated onto GNW to serve as both the shadow mask for microelectrode patterning and subsequently a precursor to be in-situ electrochemically converted into pseudo-capacitive Ni(OH)_2 for capacitance enhancing. Addressing the challenge to uniformly coat in complex nanoporous structures, this strategy renders a conformal deposition of pseudo-capacitive material on individual graphene nanoflakes, leading to efficient merits harnessing of huge accessible surfaces from the conductive GNW networks and great capacitance of the Ni-based active materials for high performance delivery. The proof of concept can be potentially extended to other transition metals and paves the way to further apply GNW hybrids in diverse microsystems.
机译:通过标准的微机电系统工艺,制备了石墨烯纳米壁(GNW)支撑的镍薄层的异质结构,以形成片上伪电容器。除了微型超级电容器的高倍率能力外,还实现了2.1 mWh cm〜(-3)的大比能量密度和高达5.91 W cm〜(-3)的功率密度,这比原来高了两个数量级。分别比那些商用电解电容器和薄膜电池大。理性分析表明,GNW的快速增长源自Pt集电器的嵌入,它是通过催化烃解离而形成的。我们设计中的独特概念包括将Ni蒸发到GNW上,既用作微电极图案化的荫罩,又将其原位电化学转化为伪电容Ni(OH)_2,以增强电容。为解决在复杂的纳米孔结构中均匀涂覆的挑战,该策略可在单个石墨烯纳米薄片上共形沉积拟电容材料,从而有效利用了导电GNW网络中巨大的可触及表面的优势,并获得了镍基活性物质的大电容用于高性能交付的材料。概念验证可以潜在地扩展到其他过渡金属,并为在各种微系统中进一步应用GNW混合动力铺平道路。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第15期|153901.1-153901.5|共5页
  • 作者单位

    Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;

    Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;

    Research Institute for Engineering and Technology, Tohoku Gakuin University, Sendai 985-8537, Japan;

    Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号