首页> 外文学位 >Generalized Prandtl-Ishlinskii hysteresis model and its analytical inverse for compensation of hysteresis in smart actuators.
【24h】

Generalized Prandtl-Ishlinskii hysteresis model and its analytical inverse for compensation of hysteresis in smart actuators.

机译:广义Prandtl-Ishlinskii滞后模型及其解析逆,用于补偿智能执行器中的滞后。

获取原文
获取原文并翻译 | 示例

摘要

Smart actuators such as piezoceramics, magnetostrictive and shape memory alloy actuators, invariably, exhibit hysteresis, which has been associated with oscillations in the open-loop system's responses, and poor tracking performance and potential instabilities of the close-loop system. A number of phenomological operator-based hysteresis models such as the Preisach model, Krasnosel'skii-Pokrovskii model and Prandtl-Ishlinskii model, have been formulated to describe the hysteresis nonlinearities and to seek compensation of the hysteresis effects. Among these, the Prandtl-Ishlinskii model offers greater flexibility and unique property that its inverse can be attained analytically. The Prandtl-Ishlinskii model, however, is limited to rate-independent and symmetric hysteresis nonlinearities. In this dissertation research, the unique flexibility of the Prandtl-Ishlinskii model is explored for describing the symmetric as well as nonlinear hysteresis and output saturation properties of smart actuators, and for deriving an analytical inverse for effective compensation.;Considering that the generalized Prandtl-Ishlinskii model provides an estimate of the hysteresis properties and the analytical inverse is a hysteresis model, the output of the inverse compensation is expected to yield hysteresis, although of a considerably lower magnitude. The expected compensation error, attributed to possible errors in hysteresis characterization, is analytically derived on the basis of the generalized model and its inverse. The design of a robust controller is presented for a system preceded by the hysteresis effects of an actuator using the proposed error model. The primary purpose is to fuse the analytical inverse compensation error model with an adaptive controller to achieve to enhance tracking precision. The global stability of the chosen control law and the entire closed-loop system is also analytically established. The results demonstrated significantly enhanced tracking performance, when the inverse of the estimated Prandtl-Ishlinskii model is considered in the closed-loop control system.;A generalized play operator with dissimilar envelope functions is proposed to describe asymmetric hysteresis and output saturation nonlinearities of different smart actuators, when applied in conjunction with the classical Prandtl-Ishlinskii model. Dynamic density and dynamic threshold functions of time rate of the input are further proposed and integrated in the classical model to describe rate-dependent symmetric and asymmetric hysteresis properties of smart actuators. A fundamental relationship between the thresholds of the classical and the resulting generalized models is also formulated to facilitate parameters identification. The validity of the resulting generalized Prandtl-Ishlinskii models is demonstrated using the laboratory-measured data for piezoceramic, magnetostrictive and SMA actuators under different inputs over a broad range of frequencies. The results suggest that the proposed generalized models can effectively characterize the rate-dependent as well as rate-independent hysteresis properties of a broad class of smart actuators with output saturation. The properties of the proposed generalized models are subsequently explored to derive its inverse to seek an effective compensator for the asymmetric as well as rate-dependent hysteresis effects. The resulting inverse is applied as a feedforward compensator and simulation results are obtained to demonstrate its effectiveness in compensating the symmetric as well as asymmetric hysteresis of different smart actuators. The effectiveness of the proposed analytical inverse model-based real-time compensator is further demonstrated through its implementation in the laboratory for a piezoceramic actuator.
机译:诸如压电陶瓷,磁致伸缩和形状记忆合金致动器之类的智能致动器始终显示出磁滞现象,这种滞后现象与开环系统响应中的振荡相关,并且跟踪性能差,闭环系统可能存在不稳定性。已经建立了许多基于现象学的基于操作符的磁滞模型,例如Preisach模型,Krasnosel'skii-Pokrovskii模型和Prandtl-Ishlinskii模型,以描述磁滞非线性并寻求磁滞效应的补偿。在这些模型中,Prandtl-Ishlinskii模型具有更大的灵活性和独特的属性,可以通过解析获得其逆值。但是,Prandtl-Ishlinskii模型仅限于速率无关和对称的磁滞非线性。本文研究了Prandtl-Ishlinskii模型的独特灵活性,用于描述智能执行器的对称,非线性磁滞和输出饱和特性,并推导有效补偿的解析逆。 Ishlinskii模型提供了磁滞特性的估计值,而解析逆函数是一个磁滞模型,尽管其幅度要小得多,但逆补偿的输出有望产生磁滞现象。在广义模型及其逆的基础上,解析​​得出了归因于磁滞特性可能存在误差的预期补偿误差。提出了针对鲁棒控制器的设计,该系统使用提出的误差模型在执行器的磁滞效应之前。主要目的是将解析逆补偿误差模型与自适应控制器融合在一起,以提高跟踪精度。所选择的控制律和整个闭环系统的全局稳定性也可以通过分析确定。结果表明,在闭环控制系统中考虑估计的Prandtl-Ishlinskii模型的逆时,跟踪性能得到了显着提高。;提出了一种具有不同包络函数的广义Play算子来描述不同智能的非对称磁滞和输出饱和非线性当与经典的Prandtl-Ishlinskii模型结合使用时。进一步提出了输入时间速率的动态密度和动态阈值函数,并将其集成到经典模型中,以描述智能执行器的速率相关的对称和非对称磁滞特性。还制定了经典模型的阈值和所得的广义模型之间的基本关系,以方便参数识别。使用实验室测量的压电陶瓷,磁致伸缩和SMA执行器的数据,可以在宽泛的频率范围内,通过实验室测量的数据来证明所得的广义Prandtl-Ishlinskii模型的有效性。结果表明,所提出的广义模型可以有效地表征具有输出饱和的多种智能执行器的速率相关以及速率无关的磁滞特性。随后探索提出的广义模型的性质,以推导其反函数,以寻求有效的补偿器,以补偿不对称以及与速率相关的磁滞效应。所得的逆值用作前馈补偿器,并获得仿真结果,以证明其在补偿不同智能执行器的对称和非对称磁滞方面的有效性。通过在实验室中对压电陶瓷执行器的实施,进一步证明了所提出的基于分析逆模型的实时补偿器的有效性。

著录项

  • 作者

    Al Janaideh, Mohammed.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号