首页> 外文学位 >Development of multidisciplinary design optimization procedures for smart composite wings and turbomachinery blades.
【24h】

Development of multidisciplinary design optimization procedures for smart composite wings and turbomachinery blades.

机译:开发智能复合材料机翼和涡轮机械叶片的多学科设计优化程序。

获取原文
获取原文并翻译 | 示例

摘要

Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied.; The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the Broyden-Fletcher-Goldberg-Shanno algorithm. The optimization problem is formulated with the objective of simultaneously minimizing wing weight and maximizing its aerodynamic efficiency. Design variables include composite ply orientations, ply thicknesses, wing sweep, piezoelectric actuator thickness and actuator voltage. Constraints are placed on the flutter/divergence dynamic pressure, wing root stresses and the maximum electric field applied to the actuators. Numerical results are presented showing significant improvements, after optimization, compared to reference designs.; The multidisciplinary optimization procedure for the design of turbomachinery blades integrates aerodynamic and heat transfer design objective criteria along with various mechanical and geometric constraints on the blade geometry. The airfoil shape is represented by Bezier-Bernstein polynomials, which results in a relatively small number of design variables for the optimization. Thin shear layer approximation of the Navier-Stokes equation is used for the viscous flow calculations. Grid generation is accomplished by solving Poisson equations. The maximum and average blade temperatures are obtained through a finite element analysis. Total pressure and exit kinetic energy losses are minimized, with constraints on blade temperatures and geometry. The constrained multiobjective optimization problem is solved using the K-S function approach. The results for the numerical example show significant improvements after optimization.
机译:已经为智能复合材料机翼和涡轮机械叶片开发了多学科设计优化(MDO)程序。所使用的分析和优化方法在计算上是有效的并且足够严格。因此,开发的MDO程序非常适合实际设计应用。具有表面结合压电致动器的复合材料飞机机翼的概念设计的优化程序涉及结构力学,空气弹性,空气动力学和控制的耦合。机翼的承重构件表示为单孔复合箱形梁。箱形梁的每个壁都使用改进的高阶位移场分析为复合材料叠层,以解决整个厚度方向上的横向剪应力的变化。因此,该模型适用于任意厚度的复合材料机翼的分析。考虑与复合结构的压电致动相关的详细结构建模问题。使用有限元方法求解运动的控制方程,以分析实际机翼几何形状。使用基于恒压提升面法的面板代码执行三维空气动力学计算,以获得稳定和非稳定的力。空气弹性分析的拉普拉斯域方法可产生系统的根轨迹,从而深入了解导致颤振/发散的物理现象,并可以有效地整合到优化过程中。建立了精细的高阶位移场对复合材料机翼气动弹性的重要性。研究了复合层定向对颤振和发散速度的影响。 Kreisselmeier-Steinhauser(K-S)函数方法用于将目标函数和约束有效地集成到单个包络函数中。使用Broyden-Fletcher-Goldberg-Shanno算法解决了由此产生的无约束优化问题。提出优化问题的目的是同时最小化机翼重量并最大化其空气动力效率。设计变量包括复合层定向,层厚度,机翼扫掠,压电致动器厚度和致动器电压。限制因素包括颤振/发散动压力,机翼根部应力和施加到致动器的最大电场。数值结果表明,与参考设计相比,优化后的性能有了显着改善。涡轮机械叶片设计的多学科优化程序将空气动力学和传热设计目标标准与叶片几何形状的各种机械和几何约束结合在一起。机翼形状由Bezier-Bernstein多项式表示,这导致用于优化的设计变量相对较少。 Navier-Stokes方程的薄剪切层近似值用于粘性流动计算。网格生成是通过求解泊松方程来完成的。最高和平均叶片温度是通过有限元分析获得的。总压力和出口动能损失最小化,并限制了叶片温度和几何形状。使用K-S函数方法解决了受约束的多目标优化问题。数值示例的结果显示,优化后有显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号