首页> 外文学位 >Multidisciplinary design optimization procedure for turbomachinery blades and sensitivity analysis technique for aerospace applications.
【24h】

Multidisciplinary design optimization procedure for turbomachinery blades and sensitivity analysis technique for aerospace applications.

机译:涡轮机械叶片的多学科设计优化程序和航空航天应用的灵敏度分析技术。

获取原文
获取原文并翻译 | 示例

摘要

A new multidisciplinary design optimization procedure, integrating aerodynamic, heat transfer, modal and structural design criteria along with various mechanical and geometric constraints, has been developed for the design of turbomachinery blades. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the multiple objective functions and constraints.; Two types of blade models have been considered. For both the blade models external cooling is enabled through film cooling ports on the surface of the blade. The first blade model is a two-dimensional (2-D) blade in which the airfoil surface is represented using cubic splines. For the 2-D airfoil, two types of internal coolant passages have been studied. In the first type, the internal passages are elliptically shaped, whereas the second type uses trapezoidal shaped passages. A thin layer Navier-Stokes solver is used for the external flow calculations. The blade interior temperatures are evaluated using the finite element method. The multiobjective optimization procedure is used to maximize kinetic energy efficiency and minimize total pressure loss, average temperature, and maximum temperature of the blade.; The second blade model that is considered is a three-dimensional (3-D) blade. The blade is divided into numerous spanwise sections and each section is represented as a Bezier-Bernstein polynomial. Trapezoidal shaped internal coolant passages are used for internal cooling. A 3-D Navier-Stokes solver is used to evaluate the external flow field, and the finite element procedure is used at each spanwise section to obtain the blade interior temperature distribution. The structural and modal analyses of the blade are performed using the ANSYS software. The blade average and maximum temperatures at each spanwise section and the blade weight are minimized. Numerical results are presented showing significant improvements, after optimization, compared to reference designs.; A continuous sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities for high speed wing body configurations. The procedure has been developed in conjunction with a parabolized Navier Stokes (PNS) solver, UPS3D. Representative results compare well with those obtained using the finite element approach and the Automatic Differentiation In FORtran (ADIFOR) software and establish the computational efficiency and accuracy of the continuous procedure.
机译:已经为涡轮机械叶片的设计开发了一种新的多学科设计优化程序,该程序综合了空气动力学,传热,模态和结构设计标准以及各种机械和几何约束。 Kreisselmeier-Steinhauser(K-S)函数方法用于有效地集成多个目标函数和约束。已经考虑了两种类型的叶片模型。对于这两种刀片型号,都可通过刀片表面上的薄膜冷却端口启用外部冷却。第一叶片模型是二维(2-D)叶片,其中使用三次样条曲线表示机翼表面。对于二维翼型,已经研究了两种类型的内部冷却剂通道。在第一类型中,内部通道是椭圆形的,而第二类型使用梯形通道。薄层Navier-Stokes求解器用于外部流量计算。叶片内部温度使用有限元方法进行评估。多目标优化程序用于使动能效率最大化,并使叶片的总压力损失,平均温度和最高温度最小化。所考虑的第二个刀片模型是三维(3-D)刀片。叶片分为多个翼展方向部分,每个部分表示为Bezier-Bernstein多项式。梯形内部冷却剂通道用于内部冷却。使用3-D Navier-Stokes求解器评估外部流场,并在每个翼展方向部分使用有限元程序来获得叶片内部温度分布。刀片的结构和模态分析使用ANSYS软件进行。使每个翼展方向部分的叶片平均温度和最高温度以及叶片重量最小化。数值结果表明,与参考设计相比,优化后的性能有了显着改善。已经开发了一种连续的灵敏度分析程序,用于计算高速机翼构型的空气动力学设计灵敏度。该程序已与抛物线型Navier Stokes(PNS)求解器UPS3D一起开发。具有代表性的结果与使用有限元方法和FORtran自动微分(ADIFOR)软件获得的结果很好地比较,并确定了连续过程的计算效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号