首页> 外文学位 >Enhanced electron mobility at gadolinium oxide(100)/silicon(100) interface: Origin and applications.
【24h】

Enhanced electron mobility at gadolinium oxide(100)/silicon(100) interface: Origin and applications.

机译:氧化g(100)/硅(100)界面处增强的电子迁移率:起源和应用。

获取原文
获取原文并翻译 | 示例

摘要

A growth of a gadolinium oxide (Gd2O3) layer with (100) orientation on a Si(100) substrate was obtained for the first time using molecular beam epitaxy deposition (MBE) with the growth temperature in the range of 150-200°C and the oxygen partial pressure in the range of 10 -7-10-6 Torr. The growth was performed on three type of Si(100) substrate; n-type, p-type, and intrinsic. Among the three major orientations, i.e. (111), (110) and (100), the Gd2O3(100) is known from energetic point of view to be least favorable. Nonetheless, an enhancement in electron mobility can only be found from the interface between Gd2O3(100) and Si(100). Although p-type Si(100) results in the best structural considerations from x-ray diffraction among the three types of substrate, the best feature was observed in the Gd2O 3(100)/n-type Si(100) because of its highest mobility enhancement and satisfactory structural stability. The mobility of 1670-1780 cm2/V˙s was observed at room temperature, for carrier concentration > 1018 cm-3. This amounts to a factor of four higher in electron mobility compared to a heavily doped n-type substrate with similar carrier concentration. This accumulation of electrons and mobility enhancement are attributed to two-dimensional confinement from charges transfer across the interface quite similar to modulation doping. Owing to these properties, the Gd2O3(100) becomes a promising candidate in promoting the scaling of logic devices.
机译:使用分子束外延沉积(MBE)首次在Si(100)衬底上生长具有(100)取向的氧化g(Gd2O3)层,生长温度在150-200°C的范围内,氧气分压在10 -7-10-6托的范围内。生长在三种类型的Si(100)衬底上进行; n型,p型和固有的。从能量的观点来看,在(111),(110)和(100)这三个主要取向中,Gd 2 O 3(100)是最不利的。但是,只能从Gd2O3(100)和Si(100)之间的界面发现电子迁移率的提高。尽管在三种类型的衬底中,p型Si(100)的结构考虑因素最好,但x射线衍射却显示出最佳的特性,因为Gd2O 3(100)/ n型Si(100)的最高特征流动性增强和令人满意的结构稳定性。对于载流子浓度> 1018cm-3,在室温下观察到的迁移率为1670-1780cm 2 / Vs。与载流子浓度相似的重掺杂n型衬底相比,这相当于电子迁移率高四倍。电子的这种积累和迁移率的提高归因于跨界面传输的电荷的二维限制,这与调制掺杂非常相似。由于这些特性,Gd2O3(100)成为促进逻辑器件扩展的有希望的候选者。

著录项

  • 作者

    Sitaputra, Wattaka.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号