首页> 外文学位 >Novel channel materials for silicon-based MOS devices: germanium, strained silicon and hybrid crystal orientations.
【24h】

Novel channel materials for silicon-based MOS devices: germanium, strained silicon and hybrid crystal orientations.

机译:用于硅基MOS器件的新型沟道材料:锗,应变硅和混合晶体取向。

获取原文
获取原文并翻译 | 示例

摘要

Integration of novel materials onto silicon substrates within a conventional CMOS framework is one of the most challenging problems facing the semiconductor industry. The evaluation of various novel channel materials such as Ge, strained Si and their alternative crystal orientations for high performance MOS devices is discussed. Techniques including the use of ultra-thin dislocation blocking layers for the epitaxial growth of Ge and strained Si, direct silicon bonding (DSB) for hybrid orientation technology (HOT) and surface passivation methods for Ge channel devices were explored in an effort to improve device performance while adhering to a CMOS-like processing scheme. Devices fabricated using low thermal budget processes with deposited high-k gate insulators and metal gate electrodes yielded significant mobility enhancements for strained Si NMOSFETs, hybrid crystal orientation devices, bulk Ge PMOSFETs as well as for PMOS devices fabricated on epi Ge layers grown on (110) Si substrates. Various tradeoffs were optimized to engineer the channel region as well as source drain junctions for long channel MOSFETs. For the dislocation blocking layer technique, deep source drain implants to minimize junction leakage and an optimized strained Si layer resulted in 50% performance enhancement. In the case of DSB-HOT devices, optimized junction passivation utilized to reduce reverse diode leakage by an order of magnitude. This reduction, coupled with DSB layer thickness optimization, may enable the implementation of this technology at the 45 nm node and beyond. The electrical quality of the bond interface for DSB wafers was also evaluated. An asymmetry in the forward and reverse current voltage characteristics was observed in spite of an oxide free bond interface. This asymmetry was attributed to a new type of junction formed at the (110)/(100) Si bond interface due to a valence band offset between the two different Si surfaces. Consistent with the experimental observation, density functional theory simulations also predict the existence of such a band offset. For bulk Ge devices, a thin SiOX interfacial layer was utilized to passivate the Ge/high-k interface and demonstrate a 2X enhancement over universal Si/SiO2 hole mobility.
机译:在常规CMOS框架内将新型材料集成到硅基板上是半导体行业面临的最具挑战性的问题之一。讨论了各种新型沟道材料(如Ge,应变Si)及其对高性能MOS器件的替代晶体取向的评估。为了改善器件,人们探索了包括使用超薄位错阻挡层用于Ge和应变硅的外延生长,用于混合取向技术(HOT)的直接硅键合(DSB)和用于Ge沟道器件的表面钝化方法的技术。性能,同时遵循类似CMOS的处理方案。使用低热预算工艺制造的具有沉积高k栅极绝缘体和金属栅电极的器件可显着提高应变Si NMOSFET,混合晶体取向器件,体Ge PMOSFET以及在生长的Epi Ge层上制造的PMOS器件的迁移率(110 )硅衬底。优化了各种折衷方案,以设计沟道区域以及长沟道MOSFET的源极漏极结。对于位错阻挡层技术而言,深源极漏极注入可最大程度地减少结泄漏,而优化的应变硅层可将性能提高50%。在DSB-HOT器件的情况下,优化的结钝化可将二极管反向漏电降低一个数量级。这种减少,再加上DSB层厚度的优化,可以使该技术在45 nm节点及以后实现。还评估了DSB晶圆的键合界面的电气质量。尽管存在无氧化物键界面,但仍观察到正向和反向电流电压特性不对称。由于两个不同的硅表面之间的价带偏移,这种不对称性归因于在(110)/(100)Si键界面处形成的新型结。与实验观察结果一致,密度泛函理论模拟也预测了这种带偏移的存在。对于块状Ge器件,使用薄的SiOX界面层来钝化Ge / high-k界面,并证明其比通用Si / SiO2空穴迁移率高2倍。

著录项

  • 作者

    Joshi, Sachin Vineet.;

  • 作者单位

    The University of Texas at Austin.$bElectrical and Computer Engineering.;

  • 授予单位 The University of Texas at Austin.$bElectrical and Computer Engineering.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号