首页> 外文会议>Silicon Nanoelectronics Workshop >A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs
【24h】

A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs

机译:N-Si纳米线MOSFET隧道隧道仿真研究的详细3D-NegF仿真研究

获取原文

摘要

Nanowire field-effect transistors (NWT) attract significant interest as strong contenders for future CMOS applications [1]. Their superior electrostatic integrity offers ultimate-scaling solutions [1]. They will be needed near the end of the current edition of the ITRS when the channel length of the transistor crosses the 10nm mark. In fact, 5nm channel length Si NWTs have been recently demonstrated experimentally [2-4]. Strong quantum confinement and tunnelling in such devices calls for full-scale quantum transport (QT) simulations. Previous simulations have shown that source-to-drain tunnelling starts to play an important role at channel lengths below 10 nm. The source-drain tunnelling increases leakage current but also enhances significantly the on-current, due to the narrowing of the source drain potential barrier at high drain voltage. The on-current enhancement persists at relatively large channel lengths. At the same time, strong degradation in the sub-threshold slope is expected as the channel length of the device shrinks. Therefore the optimal design of nanowire MOSFETs in the near-ballistic regime of operation requires a careful trade off between the detrimental tunnelling-related increase of the leakage current in the sub-threshold regime and the enhancement of the on-current at large drain bias conditions. Bearing in mind the above observations it is somewhat surprising that a systematic study of tunnelling as a function of channel length and cross-sectional size and bias conditions is somewhat lacking in the literature. We try to fill this gap by presenting a systematic study of the tunnelling in a Gate-Ail-Around (GAA) nanowire transistor. In this study we concentrate purely on the analysis of the source-to-drain tunnelling neglecting scattering from surface roughness or discrete dopants.
机译:纳米线场效应晶体管(NWT)吸引了对未来CMOS应用的强大竞争者的重要兴趣[1]。它们卓越的静电完整性提供终极缩放解决方案[1]。当晶体管的通道长度交叉10nm标记时,将在ITR的当前版本的结束时需要。事实上,最近已经通过实验证明了5nm通道长度Si NWT [2-4]。这种器件中的强量子限制和隧道呼叫满量程量子传输(QT)模拟。先前的模拟表明,源 - 漏极隧道开始在低于10nm的频道长度下发挥重要作用。由于在高漏极电压下源漏电电位屏障缩小,源极排水隧道增加漏电流,但也增强了电流的电流。当前增强持续存在于相对较大的通道长度。同时,预期子阈值斜率中的强烈降解是由于设备收缩的通道长度。因此,在近乎弹道操作方案中的纳米线MOSFET的最佳设计需要在子阈值方案中有害的隧道相关沟渠相关的漏电电流的增加之间进行仔细折衷,并且在大漏极偏置条件下的导通电流的增强。铭记上述观察结果,这有些令人惊讶的是,作为通道长度和横截面尺寸和横截面尺寸和偏置条件的函数,隧道的系统研究有些缺乏文献。我们尝试通过在栅极 - AIL - 围绕(Gaa)纳米线晶体管中的隧道系统的系统研究来填补这种差距。在这项研究中,我们纯粹集中在源于漏极隧道的分析,忽略了表面粗糙度或离散掺杂剂的散射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号