首页> 外文会议>Pacific Symposium on Biocomputing >PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT
【24h】

PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT

机译:电子医疗纪录型机械学习医院入院率预测建模 - 以西奈山心力衰竭队列为例

获取原文

摘要

Reduction of preventable hospital readmissions that result from chronic or acute conditions like stroke, heart failure, myocardial infarction and pneumonia remains a significant challenge for improving the outcomes and decreasing the cost of healthcare delivery in the United States. Patient readmission rates are relatively high for conditions like heart failure(HF)despite the implementation of high-quality healthcare delivery operation guidelines created by regulatory authorities. Multiple predictive models are currently available to evaluate potential 30-day readmission rates of patients. Most of these models are hypothesis driven and repetitively assess the predictive abilities of the same set of biomarkers as predictive features. In this manuscript, we discuss our attempt to develop a data-driven, electronic-medical record-wide(EMR-wide)feature selection approach and subsequent machine learning to predict readmission probabilities. We have assessed a large repertoire of variables from electronic medical records of heart failure patients in a single center. The cohort included 1, 068 patients with 178 patients were readmitted within a 30-day interval (16.66% readmission rate). A total of 4, 205 variables were extracted from EMR including diagnosis codes(n=1, 763), medications(n=1,028), laboratory measurements(n=846), surgical procedures(n=564)and vital signs(n=4). We designed a multistep modeling strategy using the Na?ve Bayes algorithm. In the first step, we created individual models to classify the cases(readmitted)and controls(non-readmitted). In the second step, features contributing to predictive risk from independent models were combined into a composite model using a correlation-based feature selection(CFS)method. All models were trained and tested using a 5-fold cross-validation method, with 70% of the cohort used for training and the remaining 30% for testing. Compared to existing predictive models for HF readmission rates(AUCs in the range of 0.6-0.7), results from our EMR-wide predictive model(AUC=0.78; Accuracy=83.19%)and phenome-wide feature selection strategies are encouraging and reveal the utility of such data-driven machine learning. Fine tuning of the model, replication using multi-center cohorts and prospective clinical trial to evaluate the clinical utility would help the adoption of the model as a clinical decision system for evaluating readmission status.
机译:从如中风,心脏衰竭,心肌梗塞和肺炎慢性或急性条件导致预防再住院的减少仍然是改善成果和降低医疗服务的在美国的成本显著的挑战。患者再住院率是比较高的像心脏衰竭(HF)尽管监管当局创建高品质的医疗保健服务经营方针的实施条件。多个预测模型是目前可供评估的潜在患者30天再入院率。大多数这些模型是假设驱动和重复评估相同的一组生物标记物作为预测功能的预测能力。在这个手稿中,我们讨论了我们试图建立一个数据驱动,电子病历宽(EMR范围)功能,选择方法和随后的机器学习预测再住院的概率。我们在一个单中心评估大型剧目的心脏衰竭患者的电子病历变量。该组包括1,068例178例30天间隔(16.66%的再入院率)内再次住院。共有4,205个变量从EMR提取包括诊断代码(n = 1时,763),药物(N = 1028),实验室测量(N = 846),外科手术(N = 564)和生命体征(N = 4)。我们设计采用娜一个多建模策略?已经贝叶斯算法。在第一步中,我们创建了个别车型的情况下,(再入院)和对照组(非再入院)进行分类。在第二步骤中,特征有助于从无关模型预测风险组合成使用基于相关的特征选择(CFS)方法的复合模型。所有模型被训练,并使用5倍交叉验证的方法,与用于训练和测试剩余的30%的人群的70%测试。相较于现有的预测模型为HF再住院率(在0.6-0.7范围内的AUC),从我们的EMR范围的预测模型结果(AUC = 0.78;准确度= 83.19%)和phenome宽特征选择的策略是令人鼓舞的,显示这样的数据驱动的机器学习的效用。该模型的微调,复制使用多中心队列和前瞻性临床试验,以评估的临床应用,将有助于通过该模型作为评价再入院状态的临床决策系统。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号