首页> 美国卫生研究院文献>other >PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT
【2h】

PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT

机译:电子医学记录全机学习的医院再入率预测模型:以西奈山心衰故障群为例的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reduction of preventable hospital readmissions that result from chronic or acute conditions like stroke, heart failure, myocardial infarction and pneumonia remains a significant challenge for improving the outcomes and decreasing the cost of healthcare delivery in the United States. Patient readmission rates are relatively high for conditions like heart failure (HF) despite the implementation of high-quality healthcare delivery operation guidelines created by regulatory authorities. Multiple predictive models are currently available to evaluate potential 30-day readmission rates of patients. Most of these models are hypothesis driven and repetitively assess the predictive abilities of the same set of biomarkers as predictive features. In this manuscript, we discuss our attempt to develop a data-driven, electronic-medical record-wide (EMR-wide) feature selection approach and subsequent machine learning to predict readmission probabilities. We have assessed a large repertoire of variables from electronic medical records of heart failure patients in a single center. The cohort included 1,068 patients with 178 patients were readmitted within a 30-day interval (16.66% readmission rate). A total of 4,205 variables were extracted from EMR including diagnosis codes (n=1,763), medications (n=1,028), laboratory measurements (n=846), surgical procedures (n=564) and vital signs (n=4). We designed a multistep modeling strategy using the Naïve Bayes algorithm. In the first step, we created individual models to classify the cases (readmitted) and controls (non-readmitted). In the second step, features contributing to predictive risk from independent models were combined into a composite model using a correlation-based feature selection (CFS) method. All models were trained and tested using a 5-fold cross-validation method, with 70% of the cohort used for training and the remaining 30% for testing. Compared to existing predictive models for HF readmission rates (AUCs in the range of 0.6–0.7), results from our EMR-wide predictive model (AUC=0.78; Accuracy=83.19%) and phenome-wide feature selection strategies are encouraging and reveal the utility of such data-driven machine learning. Fine tuning of the model, replication using multi-center cohorts and prospective clinical trial to evaluate the clinical utility would help the adoption of the model as a clinical decision system for evaluating readmission status.
机译:在美国,减少由中风,心力衰竭,心肌梗塞和肺炎等慢性或急性病引起的可预防的医院再入院仍然是改善结局和降低医疗保健成本的重大挑战。尽管执行了监管机构制定的高质量医疗保健操作指南,但对于心力衰竭(HF)等疾病,患者的再入院率仍然相对较高。当前有多种预测模型可用于评估患者潜在的30天再入院率。这些模型中的大多数都是假设驱动的,并重复评估了同一组生物标记物作为预测特征的预测能力。在本手稿中,我们讨论了开发数据驱动的电子医学记录范围(EMR范围)的特征选择方法以及随后的机器学习以预测再入院率的尝试。我们从单个中心的心力衰竭患者的电子病历中评估了大量变量。该队列包括1,068名患者,其中178名患者在30天内重新入院(重新入院率为16.66%)。从EMR中总共提取了4,205个变量,包括诊断代码(n = 1,763),药物(n = 1,028),实验室测量值(n = 846),手术程序(n = 564)和生命体征(n = 4)。我们使用朴素贝叶斯算法设计了多步建模策略。在第一步中,我们创建了单独的模型以对案例(重新允许)和控件(未重新允许)进行分类。在第二步中,使用基于相关的特征选择(CFS)方法将来自独立模型的有助于预测风险的特征组合到复合模型中。所有模型均使用5倍交叉验证方法进行了训练和测试,其中70%的同类群组用于训练,其余30%用于测试。与现有的HF再入院率预测模型(AUC在0.6-0.7范围内)相比,我们的EMR范围预测模型(AUC = 0.78;准确度= 83.19%)和整个现象组特征选择策略的结果令人鼓舞,并揭示了此类数据驱动的机器学习的实用程序。对该模型进行微调,使用多中心队列进行复制以及通过前瞻性临床试验来评估临床效用,将有助于将该模型作为评估再入院状态的临床决策系统。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号