首页> 外文会议>International conference on applications of photonic technology >Optical Properties of In_(1-x)Ga_xAs_yP_(1-y) Multiple Quantum Well Heterostructural Lasers
【24h】

Optical Properties of In_(1-x)Ga_xAs_yP_(1-y) Multiple Quantum Well Heterostructural Lasers

机译:IN_(1-x)GA_XAS_YP_(1-Y)多量子阱异质结构激光器的光学性质

获取原文

摘要

Understanding the physics of In_(1-x)Ga_xAs_yP_(1-y), multiple quantum well (MQW) nanostructures is essential for the development of new photonic devices such as lasers, amplifiers and modulators. In this work, optical and structural properties as well as vertical transport of three different heterostructures grown by metalorganic vapor phase epitaxy and emitting at 1.33 mum and 1.55 have bene studied using continuous wave and time-resolved photoluminescence (cw-PL and TRPL) and high resolution x-ray diffraction (HRXRD). Cw-PL measurements show an anomalous PL characteristics for the structure with a thicker active layer which is discussed in terms of electron-acceptor transitions, donor-acceptor pairs, and constraint relaxation and related structural defects. The overall observed red shift with increasing temperature is interpreted as resulting from two opposite and competitive processes: band-gap shrinkage (dominant) and blue shift caused by fluctuations in the QW layer thickness across the lateral sample direction. In the observed full width at half maximum, we identified a component of approx 8 meV as a contribuftion from longitudinal optical phonons. At high excitation densities, it is shown that carrier spillover and Auger recombination may be the major mechanisms limiting the quantum efficiency. For TRPL measurements, carrier cooling rates are discussed in terms of concurrent and opposite scattering mechanisms. It is found that the rise times of the QWs and the confinement region increase slightly (approx 2 ps) on decreasing the excitation wavelength. The observed difference is attributed to a higher initial carrier temperature associated with the shorter excitation wavelength. Comparable times of approx 4 ps are observed for the carrier transport and relaxation time within the confinement region and the carrier capture time in the quantum wells.
机译:了解IN_(1-X)GA_AS_YP_(1-Y)的物理,多量子阱(MQW)纳米结构对于开发新的光子器件(如激光器,放大器和调制器)至关重要。在这项工作中,光学和结构性质以及由金属蒸汽相外延生长的三种不同异质结构的垂直传输,并在1.33莫姆和1.55处发射,使用连续波和时间分离的光致发光(CW-PL和TRPL)和高于BENE分辨率X射线衍射(HRXRD)。 CW-PL测量显示了具有较厚活性层的结构的异常PL特性,其在电子受机转变,供体 - 受体对和约束松弛和相关结构缺陷方面讨论。随着两个相反且竞争的过程的引起而来,通过增加温度的整体观察到的红移:由横向采样方向上的QW层厚度波动引起的带间隙收缩(主导)和蓝色移位。在观察到的全宽下,我们将大约8MeV的组件识别为来自纵向光学声子的贡献。在高励磁密度下,示出了载体溢出和螺旋钻重组可以是限制量子效率的主要机制。对于TrPL测量,就同时和相反的散射机构讨论了载波冷却速率。发现QWS和限制区域的上升时间略微增加(约2ps),降低激发波长。观察到的差异归因于与较短激发波长相关的初始载波温度。在限制区域内的载体传输和弛豫时间和量子阱中的载流子捕获时间观察到大约4ps的可比较时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号