首页> 外文会议>World Conference on Carbon >TOWARD RATIONAL DESIGN OF CARBON NANOMATERIALS: DECOUPLING THE ROLE OF MATERIAL STRUCTURE AND SURFACE CHEMISTRY ON ELECTROCHEMICAL AND ANTIMICROBIAL ACTIVITY
【24h】

TOWARD RATIONAL DESIGN OF CARBON NANOMATERIALS: DECOUPLING THE ROLE OF MATERIAL STRUCTURE AND SURFACE CHEMISTRY ON ELECTROCHEMICAL AND ANTIMICROBIAL ACTIVITY

机译:致碳纳米材料的合理设计:解耦材料结构和表面化学对电化学和抗微生物活性的作用

获取原文

摘要

There has been a steady growth in the use of carbon nanomaterials (CNMs) for novel applications in the environmental field due to their unique structural and tunable physiochemical properties. Carbon nanotubes (CNTs) and graphene are at the forefront of this growing interest motivated by their interaction with environmental media to detect, remove or degrade contaminants [1, 2]. However, at the same time, there is concern that these applications can result in unintended release of these materials to the environment and human exposure with the potential to impart adverse consequences [3-5]. Realizing pathways towards safe design of CNMs while meeting performance specifications is essential for sustainable development of promising CNM-enabled products. At the foundation of this approach, is the establishment of relationships that relate material properties to both functional performance and inherent hazard. These relationships are termed here as structure-property-function (SPF) and structure-property-hazard (SPH), respectively [6]. Decoupling the causative mechanisms of material structure and surface chemistry in relation to electrochemical and biological activity is a critical step towards developing this informative design approach. The safe design of CNMs should be devoted to take advantage of material modifications that increase the electrochemical activity while decreasing the inherent hazard. While our previous work demonstrated the ability to control the electrochemical activity by manipulating surface chemistry (i.e., oxygen functional group composition) of multi-walled carbon nanotubes (MWNTs), there were synchronous trends in antimicrobial activity [7, 8]. This correlation between enhanced electrochemical activity and increased cell inactivation for bacteria is informative from a design perspective and demonstrates the opportunity to further elucidate the underlying mechanisms by which the material reactivity can be tailored and separated from hazard. Given the chemical similarity, structural and electronic differences of CNTs and graphene oxide (GO), they serve as ideal CNM allotropes to investigate structure- and surface-driven impacts on electrochemical and biological behavior. In doing so, the aim is to further resolve SPF and SPH relationships to inform development of CNMs that are functional and benign by design.
机译:由于其独特的结构和可调谐的物理化学性质,在环境场中使用碳纳米材料(CNMS),在环境场中的新应用稳定增长。碳纳米管(CNT)和石墨烯是通过它们与环境介质的相互作用来检测,去除或降解污染物[1,2]的激发的这种流利的最前沿。然而,与此同时,担心这些应用可能导致这些材料的意外释放到环境和人的暴露,赋予不良后果的可能性[3-5]。实现CNMS安全设计的途径,同时满足性能规范对于有前途的CNM产品的可持续发展至关重要。在这种方法的基础上,建立了与功能性能和固有危害的材料特性相关的关系。这些关系分别称为结构 - 性能 - 功能(SPF)和结构 - 属性 - 危险(SPH)[6]。与电化学和生物活性相关的材料结构和表面化学的致耦机制是发展这种信息设计方法的关键步骤。 CNMS的安全设计应致力于利用材料修改,以增加电化学活动的同时降低固有的危险。虽然我们以前的工作证明了通过操纵表面化学(即氧官能团组合物)的多壁碳纳米管(MWNT)来控制电化学活性的能力,抗微生物活性的同步趋势[7,8]。增强电化学活性与细胞的增加的细胞失活之间的相关性来自设计视角的信息,并证明了进一步阐明材料反应性可以量身定制和分离危险的潜在机制的机会。鉴于CNT和石墨烯(GO)的化学相似性,结构和电子差异(GO),它们是理想的CNM同种异体,用于研究对电化学和生物学行为的结构和表面驱动的影响。在这样做时,目的是进一步解决SPF和SPH关系,以便于开发由设计具有功能和良性的CNM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号