首页> 外文期刊>Journal of the American Chemical Society >Chemically Programmed Ultrahigh Density Two-Dimensional Semiconductor Superlattice Array
【24h】

Chemically Programmed Ultrahigh Density Two-Dimensional Semiconductor Superlattice Array

机译:化学程序化的超高密度二维半导体超晶格阵列

获取原文
获取原文并翻译 | 示例
           

摘要

A superlattice is a periodic array of interactive quantum wells formednby materials with different band gaps.1 The diverse functionality arisesnfrom the energy gap variations at the interface that control the carriernflow, leading to numerous devices with many potential applications.2nThe conventional superlattice-fabrication strategies based on vaporliquid-nsolid growth (VLS) or molecular beam epitaxy (MBE)ntechniques are limited by their application limit, while a direct syntheticnroute could provide an alternative means of creating high-densitynsuperlattices. However, designing an ultrahigh density linear superlatticenarray consisting of periodic blocks of different-band-gapnsemiconductors in the strong confinement regime via a direct syntheticnroute remains an unachieved challenge in nanotechnology. Partial ionnexchange demonstrates such capabilities in producing metal-semiconductornsuperlattice structures,3 though this method is deficient innproducing a large area of alternating blocks with enhanced repeatndensity, as required for ultrahigh density junction-based applications.nHere we report a general synthesis route for the formulation of a largeareanultrahigh density superlattice array that involves adjoining multiplenunits of higher-band-gap ZnS rods by lower-band-gap prolate CdSnparticles at the tips. A single one-dimensional (1D) wire is 300-500nnm long and consists of periodic quantum wells with barrier widthsnof 5 nm provided by the 1.2 nm wide ZnS rods and well widths ofn1-2 nm provided by the CdS particles, defining the superlatticenstructure. The superlattice wires are self-assembled into twodimensionaln(2D) supercrystalline arrays over an area of 2.5 μm2 withnan ultrahigh pitch density of 3.5 nm between adjacent nanowires. Thensynthesis route allows tailoring of ultranarrow laserlike emissionsn(fwhm≈125 meV) originating from strong interwell energy dispersionnalong with control of the width, pitch, and registry of the superlatticenassembly. Such an exceptional high-density superlattice array is ofnfundamental scientific importance because of its physical scale belownthe de Broglie wavelength and could form the basis of ultrahigh densitynmemories in addition to offering opportunities for technologicalnadvancement in conventional heterojunction-based device applications.
机译:超晶格是由带隙不同的材料形成的相互作用量子阱的周期性阵列。1多种功能是由控制载流子的界面处的能隙变化引起的,从而导致了许多具有许多潜在应用的器件。2n传统超晶格制造策略基于气液固相生长(VLS)或分子束外延(MBE)技术受到其应用限制,而直接合成路线可能提供创建高密度超晶格的替代方法。然而,在纳米技术中,通过直接合成途径设计由强禁闭区的不同能带间隙的半导体的周期性嵌段组成的超高密度线性超晶格阵列仍然是一项尚未实现的挑战。部分离子交换技术显示了这种生产金属-半导体超晶格结构的能力3,尽管这种方法不足以产生大面积的交替嵌段,具有增强的重复密度,这是基于超高密度结的应用所必需的。一个大面积的超高密度超晶格阵列,该阵列涉及尖端处的带隙较小的CdSn粒子与带隙较高的ZnS棒邻接的多个单位。一条一维(1D)线长300-500nnm,由周期量子阱组成,势垒宽度由1.2 nm宽的ZnS棒提供5nm的势垒宽度,由CdS颗粒提供n1-2 nm的势阱宽度,定义了超晶格结构。将超晶格线在2.5μm2的面积上自组装成二维超晶格阵列,相邻纳米线之间的超高节距密度为3.5 nm。然后,合成路线允许定制超窄激光样发射(fwhm≈125meV),其源于强烈的阱间能量色散,并控制超晶格组件的宽度,间距和配准。这种特殊的高密度超晶格阵列由于其物理规模低于布罗意波长,因此具有重要的科学意义,并且可以为超异质结器件的常规应用提供技术进步的机会,从而形成超高密度纳米晶的基础。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第4期|p.1212-1213|共2页
  • 作者单位

    Department of Chemistry, Ben-Gurion UniVersity of the NegeV, Beer-SheVa, Israel 84105, World PremierInternational (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for MaterialsScience (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, Centre for AdVanced Materials, Indian Associationfor the CultiVation of Science, Kolkata 700032, India, Solid State and Structural Chemistry Unit and Centre forCondensed Matter Theory, Indian Institute of Science, Bangalore 560012, India, and Department of MaterialsEngineering and Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion UniVersity of theNegeV, Beer-SheVa, Israel 84105;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号