首页> 中国专利> 新颖的双链寡RNA和包含它的用于预防或治疗纤维化或呼吸系统疾病的药物组合物

新颖的双链寡RNA和包含它的用于预防或治疗纤维化或呼吸系统疾病的药物组合物

摘要

本发明涉及新颖的siRNA,含有该siRNA的高效双链寡RNA结构和含有该高效双链寡RNA结构的纳米颗粒。所述双链寡RNA结构具有这样的结构,其中亲水性材料和疏水性材料通过简单共价键或接头介导的共价键与双链寡RNA(siRNA)的两端缀合,以便有效地将双链寡RNA结构递送到细胞中,并且可通过双链寡RNA结构的疏水性相互作用在水溶液中转化成纳米颗粒形式。优选双链寡RNA结构中含有的siRNA是对纤维化或呼吸系统疾病相关基因特别是双调蛋白或层状蛋白具有特异性的siRNA。此外,本发明涉及包含siRNA、含有该siRNA的高效双链寡RNA结构或含有该高效双链寡RNA结构的纳米颗粒作为活性成分的用于预防或治疗纤维化或呼吸系统疾病的药物组合物。此外,本发明涉及预防或治疗纤维化或呼吸系统疾病的方法,其包括向有此需要的受试者施用用于预防或治疗纤维化或呼吸系统疾病的药物组合物。

著录项

  • 公开/公告号CN112159807A

    专利类型发明专利

  • 公开/公告日2021-01-01

    原文格式PDF

  • 申请/专利权人 柏业公司;

    申请/专利号CN202010691387.5

  • 申请日2015-04-06

  • 分类号C12N15/113(20100101);A61K48/00(20060101);A61K31/713(20060101);A61K9/51(20060101);A61P11/00(20060101);A61P1/16(20060101);A61P9/00(20060101);A61P13/12(20060101);A61P7/00(20060101);

  • 代理机构11494 北京坤瑞律师事务所;

  • 代理人陈桉

  • 地址 韩国大田市

  • 入库时间 2023-06-19 09:23:00

说明书

本申请是中国申请号为201580029581.4、发明名称为“新颖的双链寡RNA和包含它的用于预防或治疗纤维化或呼吸系统疾病的药物组合物”且申请日为2015年04月06日的专利申请的分案申请。

技术领域

本发明涉及新颖的双链寡RNA和含有该双链寡RNA的用于预防或治疗纤维化或呼吸系统疾病的药物组合物,以及含有该高效率双链寡RNA结构的纳米颗粒。更具体地,本发明涉及具有这样结构siRNA,其中亲水性材料和疏水性材料通过简单共价键或接头介导的共价键与双链寡RNA(siRNA)的两端缀合,以便有效地递送到细胞中,并且可通过含有该siRNA的双链寡RNA结构的疏水性相互作用转化为纳米颗粒形式,以及含有该高效双链寡RNA结构的纳米颗粒,其中所述siRNA优选地对作为呼吸系统疾病相关基因的双调蛋白(amphiregulin)或层状蛋白(stratifin)具有特异性。

此外,本发明涉及含有作为活性成分的新颖的siRNA的用于预防或治疗纤维化或呼吸系统疾病的药物组合物,含有该siRNA的高效双链寡RNA结构,或含有该高效双链寡RNA结构的纳米颗粒。

背景技术

抑制基因表达的技术是开发用于治疗疾病和验证靶标的治疗剂的重要工具。作为用于抑制靶基因表达的相关技术,已披露了转导靶基因的转基因的技术。也就是说,已披露了基于启动子在反义方向上转导转基因的方法(Sheehy et al.,Proc.Natl.Acad.Sci.,USA,85:8805-8808,1988;Smith et al.,Nature,334:724-726,1988)和基于启动子在有义方向上转导转基因的方法(Napoli et al.,Plant Cell,2:279-289,1990;van der Krolet al.,Plant Cell,2:291-299,1990;美国专利第5,034,323号;美国专利第5,231,020号;和美国专利第5,283,184号)。

同时,最近据报道,转录后的基因抑制或RNA干扰(RNAi)现象是由具有20至25个碱基对的双链RNA片段的积累引起的,并且双链寡RNA由RNA模板合成。所述双链寡RNA片段被命名为“小干扰RNA”(以下称为siRNA)。此后,已经证明siRNA是抑制各种生物体(包括哺乳动物)中基因表达的重要因素(Fire et al.,Nature,391:806-811,1998;Timmons&Fire,Nature,395:854,1998;Kennerdell&Carthew,Cell,95:1017-1026,1998;Elbashir etal.,Nature,411:494-497,2001;WO 99/32619)。此外,已知双链siRNA通过RNA诱导的沉默复合物(RISC)转变为单链RNA,然后结合并使mRNA失活(Novina&Sharp,Nature,430:161-164,2004)。如上所述,使用用于抑制靶细胞中的靶基因表达并观察由该抑制引起的变化的siRNA来抑制基因表达的技术有利地用于鉴定靶细胞中的靶基因的功能。具体地,预期抑制感染性病毒、癌细胞等中的靶基因的功能可有效地应用于开发相应疾病的治疗方法。作为使用实验动物的体外研究和体内研究的结果,已经报道了靶基因的表达可能被siRNA抑制。例如,通过使用siRNA抑制癌细胞中Bcl2蛋白的表达来治疗癌细胞的方法已披露于国际专利WO 03/070969,以及通过使用siRNA抑制引起血管生成的血管内皮生长因子(VEGF)蛋白的表达来治疗癌细胞的方法已披露于WO 04/009769。

此外,siRNA与靶mRNA互补结合从而以序列特异性方式调节靶基因的表达,与常规的基于抗体的药物或小分子药物相比,其可以有利地显著扩大使用(Progress Towards inVivo Use of siRNAs:MOLECULAR THERAPY:2006 13(4):664-670)。

尽管siRNA具有优异的效果和各种使用范围,但是为了开发siRNA作为治疗剂,需要改善siRNA的体内稳定性和细胞内递送效率,以便有效地将siRNA递送到其靶标中(Harnessing In Vivo siRNA Delivery for Drug Discovery and TherapeuticDevelopment:Drug Discov.Today:2006Jan;11(1-2):67-73)。

为了改善与siRNA的先天免疫刺激问题相关的siRNA问题的体内稳定性,研究修饰一些核苷酸或siRNA的骨架以对核酸酶具有抗性或使用载体诸如病毒载体、脂质体、纳米颗粒的技术已经积极地进行。

使用病毒载体诸如腺病毒或逆转录病毒的递送系统具有高转染效率,但是免疫原性和致癌性也高。另一方面,与病毒递送系统相比,含有纳米颗粒的非病毒递送系统被评价为具有低的细胞内递送效率,但是具有优点,包括体内高安全性、靶标特异性递送、具有改善的递送效率,这是由于通过细胞或组织包含在其中的RNAi寡核苷酸的摄取和内化,并且几乎不引起细胞毒性和免疫刺激,使得目前与病毒递送系统相比,非病毒递送系统已被评价为潜在递送系统(Nonviral Delivery of Synthetic siRNAs In Vivo,J.Clin.Invest:2007December 3;117(12):3623-632)。

在非病毒递送系统中,在使用纳米载体的方法中,使用各种聚合物诸如脂质体、阳离子聚合物复合物等形成纳米颗粒,然后将siRNA负载在这些纳米颗粒即纳米载体上,从而被递送到细胞中。在使用纳米载体的方法中,主要使用聚合物纳米颗粒、聚合物胶束、脂质复合物等。其中,脂质复合物由阳离子脂质组成并与细胞中内涵体的阴离子脂质相互作用以使内涵体不稳定,从而用于将siRNA递送至细胞中。

此外,已知通过将化合物等缀合到siRNA的随从链(有义链)的末端区域以允许siRNA具有改善的药物动力学特性,可提高siRNA在体内的效率(Nature 11;432(7014):173-8,2004)。此时,siRNA的稳定性根据结合到siRNA的有义链(随从链)或反义链(引导链)末端的化学物质的性质而改变。例如,与聚合物化合物诸如聚乙二醇(PEG)缀合的siRNA在阳离子材料存在的情况下与siRNA的阴离子磷酸基团相互作用以形成复合物,从而用作具有改善的siRNA稳定性的载体(J.Control Release 129(2):107-16,2008)。具体地,由于与作为用作药物递送载体的另一系统的微球、纳米颗粒等相比,由聚合物复合物制成的胶束具有自发形成的结构,同时具有显著小的尺寸和显著均匀的分布,因此具有以下优点:可容易地管理产品的质量,并且可容易地确保再现性。

此外,为了提高siRNA的细胞内递送效率,已开发了使用通过使作为生物相容性聚合物的亲水性材料(例如,聚乙二醇(PEG))经由简单共价键或接头介导的共价键缀合至siRNA获得的siRNA缀合物来确保siRNA的稳定性并实现有效的细胞膜通透性的技术(韩国特许第883471号)。然而,即使siRNA被化学修饰并与聚乙二醇(PEG)缀合(即,siRNA被PEG化),仍然存在诸如体内稳定性低和难以将siRNA递送到靶器官中的缺点。为了克服这些缺点,已开发了其中亲水性材料和疏水性材料结合到寡核苷酸(特别是双链寡RNA诸如siRNA)的双链寡RNA结构。该结构形成称为“自组装的胶束抑制性RNA(SAMiRNA

与哮喘一起是代表性的肺部疾病之一的慢性阻塞性肺病(以下称为“COPD”)与哮喘不同,因为COPD伴有不可逆的气道阻塞,并且是特征在于由重复感染、吸入有害颗粒和气体或吸烟引起的肺中的异常炎症响应以及与其相对应的气流限制的呼吸系统疾病,其不是完全可逆的并且是进行性的(Am.J.Respir.Crit.Care Med.,163:1256-1276,2001)。COPD的严重性正在世界各地出现。原因是在1990年,COPD在疾病死亡原因中排名第六,但预计在2020年,COPD将排在第三位,并且已成为其发病率在前10名疾病中唯一增加的疾病。此外,由于预计COPD在由于疾病引起的残疾的原因中位居第四位,预计由于COPD引起的社会和经济负担将迅速增加(Lancet,349:1498-1504,1997)。COPD是由气道和肺实质炎症引起的细支气管和肺实质的病理变化引起的疾病,其特征在于阻塞性细支气管炎和肺气肿(肺实质的破坏)。COPD的类型包括慢性阻塞性支气管炎、慢性细支气管炎和肺气肿。在COPD的情况下,嗜中性粒细胞的数量增加,并且分泌细胞因子诸如粒细胞巨噬细胞集落刺激因子(GM-CSF)、肿瘤坏死因子(TNF)-α、白细胞介素(IL)-8和巨噬细胞炎症蛋白(MIP)-2。在气道中发生炎症,肌肉壁变厚,并且粘液分泌增加,从而引起支气管阻塞。当支气管阻塞时,肺囊膨胀并损伤,由此使得氧气和二氧化碳的交换能力受损,并且呼吸衰竭的发生增加。尽管在韩国8%的45岁以上的成年人是COPD患者,但是医学治疗仅偏向于肺癌,并且根据相关技术作为治疗COPD的方法,使用具有抗炎作用或支气管扩张作用的治疗剂。然而,使用基因治疗剂的COPD的基本预防和治疗尚未充分开发。具有抗炎作用的治疗剂的代表性实例包括糖皮质激素、白三烯调节剂、茶碱等。然而,由于糖皮质激素具有强效果,但是由于其副作用而通过吸入给药,并且其不选择性地抑制炎症反应,而是抑制所有免疫应答和抗炎响应,在一些情况下,也可抑制必要的免疫应答。由于白三烯调节剂的副作用小,但其效果受到限制,当单独使用白三烯调节剂时,不可能调节哮喘。因此,在大多数情况下,白三烯调节剂是辅助使用的。茶碱的问题在于效果不是很好,并且存在副作用的危险。因此,迫切需要对能够具有优异的预防和治疗COPD的效果和减少副作用的新颖治疗剂的需求。

同时,作为一种纤维化的特发性肺纤维化(以下称为“IPF”)是这样的疾病,其中慢性炎性细胞穿透肺囊壁(肺泡),通过使肺变硬而产生各种变化,这导致肺组织中严重的结构变化,使得肺功能逐渐恶化,从而最终导致死亡。然而,其有效治疗尚不存在,并且IPF通常仅在症状出现时才诊断,并且具有极差的预后,因为中值存活时间仅为约三至五年。据报道,IPF的发病率在外国每100,000人中约为3至5人,并且已知大多数情况下,IPF的发病率在50岁以上增加,并且男性中IPF的发病率是女性的2倍。

尚未清楚地确定IPF的原因,并且仅仅报道了吸烟者中IPF的发病率高,并且抗抑郁药、由于胃食管反流、金属粉尘、木屑的慢性吸入、溶剂吸入等是与IPF的发生相关的危险因素。然而,在大多数患者中不能发现具有某些致病因素的因素。

已知当不治疗IPF时,IPF不断恶化,因此约50%或更多的患者在3至5年内死亡。此外,一旦随着疾病的进展,通过纤维化使肺完全硬化,即使进行任何类型的治疗,患者也不会改善。因此,预测即使进行治疗,仅在早期进行治疗时,所展现效果的可能性会增加。作为目前使用的治疗剂,已知使用类固醇和硫唑嘌呤或环磷酰胺的联合治疗方法,但是难说具有特殊效果,并且几种纤维化抑制剂在动物实验和小组患者中的尝试失败证明效果明显。具体地,除了肺移植之外,在具有末期IPF的患者中没有其它有效的治疗方法。因此,迫切需要开发更有效的IPF治疗剂。

由于某些原因,由于结缔组织的过度纤维化而使组织或器官固结的疾病统称为纤维化,并且纤维化的所有过程与瘢痕治疗的过程相同,而与位点无关。到目前为止,几乎不可能完全治愈纤维化症状,并且已经开发和研究了治疗纤维化的方法。有效的纤维化治疗剂也可应用于伴随纤维化的各种疾病以及作为代表性纤维化疾病的肝硬化、骨髓纤维化、心肌纤维化、肾纤维化和肺纤维化。因此,迫切需要开发有效的纤维化治疗剂。

同时,已知双调蛋白结合上皮生长因子受体(EGFR)以激活EGFR途径并参与细胞增殖,并且已经披露了双调蛋白的表达可被双调蛋白特异性siRNA抑制,以及双调蛋白特异性siRNA可能对特定类型乳腺癌具有治疗效果的事实(Cancer Res.,2008;68:225-2265)。此外,据报道,使用双调蛋白的shRNA可抑制炎性乳腺癌中的细胞穿透(J.Cell Physiol.,2011,226(10):2691-2701),并且当使用双调蛋白特异性shRNA抑制双调蛋白的表达时,暴露于香烟烟雾的小鼠中肺动脉重塑被抑制。据报道,双调蛋白与气道平滑肌(ASM)增生和血管生成有关,并且特别地促进哮喘患者的气道重塑,并且在急性哮喘和双调蛋白中的组织重塑中过度分泌的表皮生长因子(EGF)彼此相关。

此外,据报道,层状蛋白(14-3-3西格玛蛋白或SFN)参与各种细胞间功能,诸如细胞周期、凋亡、信号传导机制调节、细胞运输、细胞增殖和分化、细胞存活等(Mol.CellBiochem.,2007,305:255-64),并且使用层状蛋白特异性siRNA参与TGF-β1介导的生长抑制(Mol.Cell,2010;.2;305-309)。此外,据报道,调节胶原形成和分解的因子参与哮喘的气道重塑,特别地,金属蛋白酶(MMP)-1在胶原的分解中起重要作用,并且调节气道中MMP-1的表达的重要因素之一为层状蛋白。

如上所述,已经提出了作为治疗呼吸系统疾病和纤维化,特别是COPD和特发性肺纤维化的靶标的双调蛋白和层状蛋白的可能性,但是到目前为止,双调蛋白和层状蛋白的siRNA治疗剂和siRNA治疗剂的递送技术尚未充分开发。因此,市场上对能够特异性和高效抑制双调蛋白和层状蛋白表达的siRNA治疗剂及其递送技术有显著高的需求。

公开内容

本发明的目的是提供能够特异性且高效抑制特定基因的新颖双链寡RNA,优选siRNA,含有该双链寡RNA的双链寡RNA结构,以及含有该双链寡RNA结构的纳米颗粒。

本发明的另一个目的是提供用于预防或治疗纤维化或呼吸系统疾病的药物组合物,其包含作为有效成分的siRNA,含有该siRNA的双链寡RNA结构或含有双链寡RNA结构的纳米颗粒。

本发明的另一个目的是提供一种预防或治疗纤维化或呼吸系统疾病的方法,其包括向有此需要的受试者施用用于预防或治疗纤维化或呼吸系统疾病的药物组合物。

附图简述

图1是本发明的含有双链寡RNA结构的纳米颗粒的模拟图。

图2,其表示实施例4中定量分析双调蛋白mRNA的表达量获得的结果,是表示用30种小鼠双调蛋白特异性siRNA转化小鼠成纤维细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述小鼠双调蛋白特异性siRNA分别具有作为有义链的本发明的SEQ ID NO:1至30的序列,浓度为20nM。NC表示在未用小鼠双调蛋白特异性siRNA处理的细胞系(对照组)中获得的总RNA中双调蛋白mRNA的表达量,以及根据基于NC(100%)测量的各siRNA的双调蛋白mRNA的相对表达量,示于图2。

图3,其表示实施例6中定量分析双调蛋白mRNA的表达量获得的结果,是表示用siRNA转化小鼠成纤维细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述siRNA分别具有作为有义链的本发明的SEQ ID NO:8,9和28的序列,siRNA在不同浓度(0.2、1和5nM)。

图4,其表示实施例7中定量分析双调蛋白mRNA的表达量获得的结果,是表示用100种人双调蛋白特异性siRNA转化人肺肿瘤细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人双调蛋白特异性siRNA分别具有作为有义链的本发明的SEQ ID NO:31至130的序列,浓度为1nM。

图5,其表示实施例7中定量分析层状蛋白mRNA的表达量获得的结果,是表示用100种人层状蛋白特异性siRNA转化人肺肿瘤细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人层状蛋白特异性siRNA分别具有作为有义链的本发明的SEQ ID NO:231至330的序列,浓度为1nM。

图6,其表示实施例8中定量分析双调蛋白mRNA的表达量获得的结果,是表示用26种人双调蛋白特异性siRNA转化人肺癌细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人双调蛋白特异性siRNA分别具有作为有义链的本发明的SEQ ID NO:40、42、43、45、46、52、53、58、59、61、63、65、69、75、79、80、81、91、92、94、98、102、115、117、120和128的序列,浓度为0.2nM。

图7,其表示实施例8中定量分析层状蛋白mRNA的表达量获得的结果,是表示用47种人层状蛋白特异性siRNA转化人肺癌细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人层状蛋白特异性siRNA分别具有作为有义链的本发明的SEQ ID NO:231、234、238、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、257、258、260、261、262、263、267、268、270、272、273、275、278、283、284、290、297、299、300、302、303、307、311、314、320、324、326、327和328的序列,浓度为0.2nM。

图8,其表示实施例9中定量分析双调蛋白mRNA的表达量获得的结果,是表示用3种人双调蛋白特异性SAMiRNA转化人肺癌细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人双调蛋白特异性SAMiRNA分别具有作为有义链的本发明的SEQ ID NO:79、80和91的序列,为在100、200和500nM的不同浓度。

图9,其表示实施例9中定量分析层状蛋白mRNA的表达量获得的结果,是表示用3种人层状蛋白特异性SAMiRNA转化人肺癌细胞系后确认的双调蛋白mRNA的相对表达量(%)的图,所述人层状蛋白特异性SAMiRNA分别具有作为有义链的本发明的SEQ ID NO:248、257、268、290和327的序列,在50、100和200nM的不同浓度。

具体实施方式

除非本文另有定义,否则本说明书中使用的所有技术和科学术语具有与本发明所属领域的技术人员通常理解的相同的含义。通常,本说明书中使用的命名法是本领域公知并且常用的。

为了实现上述目的,本发明提供一种siRNA,其包含具有选自SEQ IDNO:1至330的任一序列的有义链和具有与其互补的序列的反义链。

此外,本发明提供具有以下结构式1所示结构的双链寡RNA结构,其中,在以下结构式1中,A为亲水性材料,B为疏水性材料,X和Y各自独立地为简单共价键(simple covalent)或接头介导的共价键,并且R为siRNA。

[结构式1]

A-X-R-Y-B

此外,本发明提供了包含双链寡RNA结构的纳米颗粒。

此外,本发明提供了用于预防或治疗纤维化或呼吸道疾病的药物组合物,其包含siRNA、双链寡RNA结构或纳米颗粒。

此外,本发明提供了一种预防或治疗纤维化或呼吸系统疾病的方法,其包括向有此需要的受试者施用用于预防或治疗纤维化或呼吸系统疾病的药物组合物的步骤。

在本发明中,制备了新颖的双调蛋白特异性或层状蛋白特异性siRNA。结果证实,由于新颖的双调蛋白或层状蛋白特异性siRNA具有设计为与编码双调蛋白或层状蛋白的mRNA互补结合的碱基序列,所述新颖的双调蛋白特异性或层状蛋白特异性siRNA可有效抑制双调蛋白或层状蛋白的表达。

在一个方面,本发明涉及siRNA,其包含具有选自SEQ ID NO:1至330的任一序列的有义链(第一寡核苷酸)和具有与其互补的序列的反义链(第二寡核苷酸)。

5'-ggaguaugauaaugaacca-3'(SEQ ID NO:1)、

5'-caguaguagcugucacuau-3'(SEQ ID NO:2)、

5'-agacucacagcgaggauga-3'(SEQ ID NO:3)、

5'-cacaaauauccggcuauau-3'(SEQ ID NO:4)、

5'-caccauaagcgaaaugccu-3'(SEQ ID NO:5)、

5'-gauuacuuuggugaacggu-3'(SEQ ID NO:6)、

5'-caguugucacuuuuuauga-3'(SEQ ID NO:7)、

5'-ggaccuauccaagauugca-3'(SEQ ID NO:8)、

5'-cguuaucacagugcaccuu-3'(SEQ ID NO:9)、

5'-ccuagcugaggacaaugca-3'(SEQ ID NO:10)、

5'-ggaagagagguuuccacca-3'(SEQ ID NO:11)、

5'-cucagaggaguaugauaau-3'(SEQ ID NO:12)、

5'-cgguggacuugagcuuucu-3'(SEQ ID NO:13)、

5'-gguggugacaugcaauugu-3'(SEQ ID NO:14)、

5'-cagggaauaugaaggagaa-3'(SEQ ID NO:15)、

5'-ggaggcuucgacaagaaaa-3'(SEQ ID NO:16)、

5'-ccgguggaaccaaugagaa-3'(SEQ ID NO:17)、

5'-ccggcuauauuauagauga-3'(SEQ ID NO:18)、

5'-agaauccaugcacugccaa-3'(SEQ ID NO:19)、

5'-caaggaccuauccaagauu-3'(SEQ ID NO:20)、

5'-caaauauccggcuauauua-3'(SEQ ID NO:21)、

5'-gggacuacgacuacucaga-3'(SEQ ID NO:22)、

5'-gcgaaugcagauacaucga-3'(SEQ ID NO:23)、

5'-gccacaccggaaaugacau-3'(SEQ ID NO:24)、

5'-agaguugaacaggugauua-3'(SEQ ID NO:25)、

5'-gaaccacaaauauccggcu-3'(SEQ ID NO:26)、

5'-cauaagcgaaaugccuucu-3'(SEQ ID NO:27)、

5'-guuuccaccauaagcgaaa-3'(SEQ ID NO:28)、

5'-caggugauuaagcccaaga-3'(SEQ ID NO:29)、

5'-ccacaccggaaaugacauu-3'(SEQ ID NO:30)、

5'-gagtgaaatgccttctagt-3'(SEQ ID NO:31)、

5'-cagagttgaacaggtagtt-3'(SEQ ID NO:32)、

5'-ctggattggacctcaatga-3'(SEQ ID NO:33)、

5'-gaaaactcacagcatgatt-3'(SEQ ID NO:34)、

5'-gaaacttcgacaagagaat-3'(SEQ ID NO:35)、

5'-caggaaatatgaaggagaa-3'(SEQ ID NO:36)、

5'-gcaaatatatagagcacct-3'(SEQ ID NO:37)、

5'-ggtgctgtcgctcttgata-3'(SEQ ID NO:38)、

5'-tcagagttgaacaggtagt-3'(SEQ ID NO:39)、

5'-gaaagaaacttcgacaaga-3'(SEQ ID NO:40)、

5'-gacaatacgtcaggaaata-3'(SEQ ID NO:41)、

5'-caggatatcacattggagt-3'(SEQ ID NO:42)、

5'-ctctttccagtggatcata-3'(SEQ ID NO:43)、

5'-cggctcaggccattatgct-3'(SEQ ID NO:44)、

5'-ggaccacagtgctgatgga-3'(SEQ ID NO:45)、

5'-gctgctggattggacctca-3'(SEQ ID NO:46)、

5'-gttattacagtccagctta-3'(SEQ ID NO:47)、

5'-tggacctcaatgacaccta-3'(SEQ ID NO:48)、

5'-ctggctatattgtcgatga-3'(SEQ ID NO:49)、

5'-gacggaaagtgaaaatact-3'(SEQ ID NO:50)、

5'-gtatgataacgaaccacaa-3'(SEQ ID NO:51)、

5'-acattggagtcactgccaa-3'(SEQ ID NO:52)、

5'-ccaagtcatagccataaat-3'(SEQ ID NO:53)、

5'-agtgaaatgccttctagta-3'(SEQ ID NO:54)、

5'-gataacgaaccacaaatac-3'(SEQ ID NO:55)、

5'-tgcattagcagccatagct-3'(SEQ ID NO:56)、

5'-gcattcacggagaatgcaa-3'(SEQ ID NO:57)、

5'-ggagtcactgccaagtcat-3'(SEQ ID NO:58)、

5'-aggtgcacgaaggtaaaaa-3'(SEQ ID NO:59)、

5'-cagcatgattgacagtagt-3'(SEQ ID NO:60)、

5'-cttagaagacaatacgtca-3'(SEQ ID NO:61)、

5'-agagttgaacaggtagtta-3'(SEQ ID NO:62)、

5'-tgatgagtcggtcctcttt-3'(SEQ ID NO:63)、

5'-atatatagagcacctggaa-3'(SEQ ID NO:64)、

5'-gagttgaacaggtagttaa-3'(SEQ ID NO:65)、

5'-cattcacggagaatgcaaa-3'(SEQ ID NO:66)、

5'-ggaccctttttgttatgat-3'(SEQ ID NO:67)、

5'-cagaagagtatgataacga-3'(SEQ ID NO:68)、

5'-ccagtggatcataagacaa-3'(SEQ ID NO:69)、

5'-gctgttattacagtccagc-3'(SEQ ID NO:70)、

5'-gggaagcgtgaaccatttt-3'(SEQ ID NO:71)、

5'-cacagtgctgatggatttg-3'(SEQ ID NO:72)、

5'-agtcagagttgaacaggta-3'(SEQ ID NO:73)、

5'-tggaagcagtaacatgcaa-3'(SEQ ID NO:74)、

5'-cacgaaggtaaaaagtatt-3'(SEQ ID NO:75)、

5'-agaagagtatgataacgaa-3'(SEQ ID NO:76)、

5'-gaagcgtgaaccattttct-3'(SEQ ID NO:77)、

5'-ggctatattgtcgatgatt-3'(SEQ ID NO:78)、

5'-gagtcactgccaagtcata-3'(SEQ ID NO:79)、

5'-caatggaccctttttgtta-3'(SEQ ID NO:80)、

5'-gcacgaaggtaaaaagtat-3'(SEQ ID NO:81)、

5'-tgaaatgccttctagtagt-3'(SEQ ID NO:82)、

5'-tggatcataagacaatgga-3'(SEQ ID NO:83)、

5'-gtgagtgaaatgccttcta-3'(SEQ ID NO:84)、

5'-gacctcaatgacacctact-3'(SEQ ID NO:85)、

5'-cctcaatgacacctactct-3'(SEQ ID NO:86)、

5'-gctgatggatttgaggtta-3'(SEQ ID NO:87)、

5'-ggaagcagtaacatgcaaa-3'(SEQ ID NO:88)、

5'-cagtaacatgcaaatgtca-3'(SEQ ID NO:89)、

5'-gctatagcataactgaaga-3'(SEQ ID NO:90)、

5'-ggatatcacattggagtca-3'(SEQ ID NO:91)、

5'-ccctttttgttatgatggt-3'(SEQ ID NO:92)、

5'-gtatataaaggtgcacgaa-3'(SEQ ID NO:93)、

5'-ggacctcaatgacacctac-3'(SEQ ID NO:94)、

5'-gctcttgatactcggctca-3'(SEQ ID NO:95)、

5'-tgctgctggattggacctc-3'(SEQ ID NO:96)、

5'-gaaccacaaatacctggct-3'(SEQ ID NO:97)、

5'-cggtcctctttccagtgga-3'(SEQ ID NO:98)、

5'-ttccaacacccgctcgttt-3'(SEQ ID NO:99)、

5'-agagcacctggaagcagta-3'(SEQ ID NO:100)、

5'-tctttccagtggatcataa-3'(SEQ ID NO:101)、

5'-cctttttgttatgatggtt-3'(SEQ ID NO:102)、

5'-cacctggaagcagtaacat-3'(SEQ ID NO:103)、

5'-ctgaggaacgaaagaaact-3'(SEQ ID NO:104)、

5'-gtgaaatgccttctagtag-3'(SEQ ID NO:105)、

5'-ctactctgggaagcgtgaa-3'(SEQ ID NO:106)、

5'-ctgggaagcgtgaaccatt-3'(SEQ ID NO:107)、

5'-actactcagaagagtatga-3'(SEQ ID NO:108)、

5'-catgcaaatgtcagcaaga-3'(SEQ ID NO:109)、

5'-tgaggttacctcaagaagt-3'(SEQ ID NO:110)、

5'-actcggctcaggccattat-3'(SEQ ID NO:111)、

5'-ttcacggagaatgcaaata-3'(SEQ ID NO:112)、

5'-ctgctggattggacctcaa-3'(SEQ ID NO:113)、

5'-tgattcagtcagagttgaa-3'(SEQ ID NO:114)、

5'-tgccaagtcatagccataa-3'(SEQ ID NO:115)、

5'-ctcaagaagtgagatgtct-3'(SEQ ID NO:116)、

5'-gccaagtcatagccataaa-3'(SEQ ID NO:117)、

5'-ctcagaagagtatgataac-3'(SEQ ID NO:118)、

5'-ttctgcattcacggagaat-3'(SEQ ID NO:119)、

5'-taagacaatggaccctttt-3'(SEQ ID NO:120)、

5'-aggttacctcaagaagtga-3'(SEQ ID NO:121)、

5'-aatgccttctagtagtgaa-3'(SEQ ID NO:122)、

5'-atgattcagtcagagttga-3'(SEQ ID NO:123)、

5'-aaacaagacggaaagtgaa-3'(SEQ ID NO:124)、

5'-tttctgcattcacggagaa-3'(SEQ ID NO:125)、

5'-caaatacctggctatattg-3'(SEQ ID NO:126)、

5'-tcttccaacacccgctcgt-3'(SEQ ID NO:127)、

5'-gaagcagtaacatgcaaat-3'(SEQ ID NO:128)、

5'-gatgattcagtcagagttg-3'(SEQ ID NO:129)、

5'-tgcattcacggagaatgca-3'(SEQ ID NO:130)、

5'-ctcagtgaggactcctaca-3'(SEQ ID NO:131)、

5'-cactacgagatagccaaca-3'(SEQ ID NO:132)、

5'-cagtcttccactacgagat-3'(SEQ ID NO:133)、

5'-agctcctgagagacaacct-3'(SEQ ID NO:134)、

5'-tcagtcttccactacgaga-3'(SEQ ID NO:135)、

5'-agagacaacctgacgctgt-3'(SEQ ID NO:136)、

5'-ccgaacggtatgaagacat-3'(SEQ ID NO:137)、

5'-ctgaacaggccgaacggta-3'(SEQ ID NO:138)、

5'-ctcctgagagacaacctga-3'(SEQ ID NO:139)、

5'-gacatggcagctttcatga-3'(SEQ ID NO:140)、

5'-cgaacggtatgaagacatg-3'(SEQ ID NO:141)、

5'-agtaccgggagaaggtaga-3'(SEQ ID NO:142)、

5'-acttttcagtcttccacta-3'(SEQ ID NO:143)、

5'-gcatcgagcagaagagcaa-3'(SEQ ID NO:144)、

5'-gcgaaacctgctttccgta-3'(SEQ ID NO:145)、

5'-gtgaaagagtaccgggaga-3'(SEQ ID NO:146)、

5'-gcgatgacaagaagcgcat-3'(SEQ ID NO:147)、

5'-agtcttccactacgagata-3'(SEQ ID NO:148)、

5'-tcagtgaggactcctacaa-3'(SEQ ID NO:149)、

5'-ggtagagaccgagctcaga-3'(SEQ ID NO:150)、

5'-ccgaggtgaaagagtaccg-3'(SEQ ID NO:151)、

5'-caggccgaacggtatgaag-3'(SEQ ID NO:152)、

5'-cggtatgaagacatggcag-3'(SEQ ID NO:153)、

5'-tgctggactcgcacctcat-3'(SEQ ID NO:154)、

5'-aagaagcgcatcatcgatt-3'(SEQ ID NO:155)、

5'-ctggactcgcacctcatca-3'(SEQ ID NO:156)、

5'-ggactcgcacctcatcaaa-3'(SEQ ID NO:157)、

5'-gaagcgcatcatcgattct-3'(SEQ ID NO:158)、

5'-gtcttccactacgagatag-3'(SEQ ID NO:159)、

5'-aaggtagagaccgagctca-3'(SEQ ID NO:160)、

5'-agcgaaacctgctttccgt-3'(SEQ ID NO:161)、

5'-gactactaccgctacctag-3'(SEQ ID NO:162)、

5'-cagagagccgcgtcttcta-3'(SEQ ID NO:163)、

5'-gatgacaagaagcgcatca-3'(SEQ ID NO:164)、

5'-catcgagcagaagagcaac-3'(SEQ ID NO:165)、

5'-tgcagctcctgagagacaa-3'(SEQ ID NO:166)、

5'-acggtatgaagacatggca-3'(SEQ ID NO:167)、

5'-tggactcgcacctcatcaa-3'(SEQ ID NO:168)、

5'-ggcgatgacaagaagcgca-3'(SEQ ID NO:169)、

5'-tgaacaggccgaacggtat-3'(SEQ ID NO:170)、

5'-aggccgaacggtatgaaga-3'(SEQ ID NO:171)、

5'-tcgagcagaagagcaacga-3'(SEQ ID NO:172)、

5'-tccactacgagatagccaa-3'(SEQ ID NO:173)、

5'-ggtgaaagagtaccgggag-3'(SEQ ID NO:174)、

5'-gccgaacggtatgaagaca-3'(SEQ ID NO:175)、

5'-aggagatgccgcctaccaa-3'(SEQ ID NO:176)、

5'-ggagcgaaacctgctttcc-3'(SEQ ID NO:177)、

5'-cagtgaggactcctacaag-3'(SEQ ID NO:178)、

5'-agcgcatcatcgattctgc-3'(SEQ ID NO:179)、

5'-catcatgcagctcctgaga-3'(SEQ ID NO:180)、

5'-gccgcgtcttctacctgaa-3'(SEQ ID NO:181)、

5'-gagacaacctgacgctgtg-3'(SEQ ID NO:182)、

5'-cgatgacaagaagcgcatc-3'(SEQ ID NO:183)、

5'-cttccactacgagatagcc-3'(SEQ ID NO:184)、

5'-ccactacgagatagccaac-3'(SEQ ID NO:185)、

5'-gctcctgagagacaacctg-3'(SEQ ID NO:186)、

5'-atcatcgattctgcccggt-3'(SEQ ID NO:187)、

5'-tgagagacaacctgacgct-3'(SEQ ID NO:188)、

5'-agacatggcagctttcatg-3'(SEQ ID NO:189)、

5'-tcttccactacgagatagc-3'(SEQ ID NO:190)、

5'-gaacaggccgaacggtatg-3'(SEQ ID NO:191)、

5'-atgcagctcctgagagaca-3'(SEQ ID NO:192)、

5'-accgagctcagaggtgtgt-3'(SEQ ID NO:193)、

5'-cctgagagacaacctgacg-3'(SEQ ID NO:194)、

5'-cacaccctcagtgaggact-3'(SEQ ID NO:195)、

5'-ttccactacgagatagcca-3'(SEQ ID NO:196)、

5'-acatggcagctttcatgaa-3'(SEQ ID NO:197)、

5'-tgacaagaagcgcatcatc-3'(SEQ ID NO:198)、

5'-aaggagatgccgcctacca-3'(SEQ ID NO:199)、

5'-cttttcagtcttccactac-3'(SEQ ID NO:200)、

5'-tcctgagagacaacctgac-3'(SEQ ID NO:201)、

5'-gcagctcctgagagacaac-3'(SEQ ID NO:202)、

5'-agccgcgtcttctacctga-3'(SEQ ID NO:203)、

5'-attctgcccggtcagccta-3'(SEQ ID NO:204)、

5'-actcgcacctcatcaaagg-3'(SEQ ID NO:205)、

5'-agaccgagctcagaggtgt-3'(SEQ ID NO:206)、

5'-gactcgcacctcatcaaag-3'(SEQ ID NO:207)、

5'-agaagcgcatcatcgattc-3'(SEQ ID NO:208)、

5'-gggtgactactaccgctac-3'(SEQ ID NO:209)、

5'-caagaccaccttcgacgag-3'(SEQ ID NO:210)、

5'-ctacgagatagccaacagc-3'(SEQ ID NO:211)、

5'-tttcagtcttccactacga-3'(SEQ ID NO:212)、

5'-aggtgaaagagtaccggga-3'(SEQ ID NO:213)、

5'-aagcgcatcatcgattctg-3'(SEQ ID NO:214)、

5'-gcatcatcgattctgcccg-3'(SEQ ID NO:215)、

5'-aacggtatgaagacatggc-3'(SEQ ID NO:216)、

5'-atcgagcagaagagcaacg-3'(SEQ ID NO:217)、

5'-actactaccgctacctagc-3'(SEQ ID NO:218)、

5'-ttttcagtcttccactacg-3'(SEQ ID NO:219)、

5'-acgagatagccaacagccc-3'(SEQ ID NO:220)、

5'-actaccgctacctagccga-3'(SEQ ID NO:221)、

5'-actacgagatagccaacag-3'(SEQ ID NO:222)、

5'-cccgaggtgaaagagtacc-3'(SEQ ID NO:223)、

5'-cagctcctgagagacaacc-3'(SEQ ID NO:224)、

5'-catcgattctgcccggtca-3'(SEQ ID NO:225)、

5'-gagagacaacctgacgctg-3'(SEQ ID NO:226)、

5'-gcgcatcatcgattctgcc-3'(SEQ ID NO:227)、

5'-gaaggtagagaccgagctc-3'(SEQ ID NO:228)、

5'-tcatcgattctgcccggtc-3'(SEQ ID NO:229)、

5'-gaacggtatgaagacatgg-3'(SEQ ID NO:230)、

5'-cgtaggaattgaggagtgt-3'(SEQ ID NO:231)、

5'-cactacgagatcgccaaca-3'(SEQ ID NO:232)、

5'-gctgtccagtattgagcag-3'(SEQ ID NO:233)、

5'-gaccatgtttcctctcaat-3'(SEQ ID NO:234)、

5'-cgagacaacctgacactgt-3'(SEQ ID NO:235)、

5'-cgtcttccactacgagatc-3'(SEQ ID NO:236)、

5'-cctgcgaagagcgaaacct-3'(SEQ ID NO:237)、

5'-gctgcctctgatcgtagga-3'(SEQ ID NO:238)、

5'-ccaagaccactttcgacga-3'(SEQ ID NO:239)、

5'-gtctgctgggtgtgaccat-3'(SEQ ID NO:240)、

5'-ctctgatcgtaggaattga-3'(SEQ ID NO:241)、

5'-gctgggtgtgaccatgttt-3'(SEQ ID NO:242)、

5'-tggccaagaccactttcga-3'(SEQ ID NO:243)、

5'-cgacaagaagcgcatcatt-3'(SEQ ID NO:244)、

5'-ctgccgagaggactagtat-3'(SEQ ID NO:245)、

5'-gcctctgatcgtaggaatt-3'(SEQ ID NO:246)、

5'-gcgctgttcttgctccaaa-3'(SEQ ID NO:247)、

5'-ctgcctctgatcgtaggaa-3'(SEQ ID NO:248)、

5'-gccctgaacttttccgtct-3'(SEQ ID NO:249)、

5'-tgcctctgatcgtaggaat-3'(SEQ ID NO:250)、

5'-tgaccatgtttcctctcaa-3'(SEQ ID NO:251)、

5'-ccatgtttcctctcaataa-3'(SEQ ID NO:252)、

5'-ggtgacgacaagaagcgca-3'(SEQ ID NO:253)、

5'-acttttccgtcttccacta-3'(SEQ ID NO:254)、

5'-tccgtcttccactacgaga-3'(SEQ ID NO:255)、

5'-ctctcctgcgaagagcgaa-3'(SEQ ID NO:256)、

5'-ccaggaccaggctacttct-3'(SEQ ID NO:257)、

5'-cctgctgcctctgatcgta-3'(SEQ ID NO:258)、

5'-ccgaacgctatgaggacat-3'(SEQ ID NO:259)、

5'-ccctgaacttttccgtctt-3'(SEQ ID NO:260)、

5'-ccgtcttccactacgagat-3'(SEQ ID NO:261)、

5'-gagacaacctgacactgtg-3'(SEQ ID NO:262)、

5'-gcatgtctgctgggtgtga-3'(SEQ ID NO:263)、

5'-tggctgagaactggacagt-3'(SEQ ID NO:264)、

5'-gccgaacgctatgaggaca-3'(SEQ ID NO:265)、

5'-ctgtccagtattgagcaga-3'(SEQ ID NO:266)、

5'-gtattgagcagaaaagcaa-3'(SEQ ID NO:267)、

5'-cagctgttgagcgcaccta-3'(SEQ ID NO:268)、

5'-gacaacctgacactgtgga-3'(SEQ ID NO:269)、

5'-tggagagagccagtctgat-3'(SEQ ID NO:270)、

5'-cgaacgctatgaggacatg-3'(SEQ ID NO:271)、

5'-ggtgctgtccagtattgag-3'(SEQ ID NO:272)、

5'-gaagcgcatcattgactca-3'(SEQ ID NO:273)、

5'-tcgtaggaattgaggagtg-3'(SEQ ID NO:274)、

5'-gctgcgagacaacctgaca-3'(SEQ ID NO:275)、

5'-tgctgtccagtattgagca-3'(SEQ ID NO:276)、

5'-ctgttcttgctccaaaggg-3'(SEQ ID NO:277)、

5'-cctctgatcgtaggaattg-3'(SEQ ID NO:278)、

5'-ccaccggtgacgacaagaa-3'(SEQ ID NO:279)、

5'-gtcttccactacgagatcg-3'(SEQ ID NO:280)、

5'-ctacctgaagatgaagggt-3'(SEQ ID NO:281)、

5'-ctataagaacgtggtgggc-3'(SEQ ID NO:282)、

5'-ctctggccaagaccacttt-3'(SEQ ID NO:283)、

5'-cgctgttcttgctccaaag-3'(SEQ ID NO:284)、

5'-ccactttcgacgaggccat-3'(SEQ ID NO:285)、

5'-tgagaactggacagtggca-3'(SEQ ID NO:286)、

5'-ctggccaagaccactttcg-3'(SEQ ID NO:287)、

5'-ttgagcagaaaagcaacga-3'(SEQ ID NO:288)、

5'-tgcgagacaacctgacact-3'(SEQ ID NO:289)、

5'-agctgttgagcgcacctaa-3'(SEQ ID NO:290)、

5'-gaacttttccgtcttccac-3'(SEQ ID NO:291)、

5'-aaaagcaacgaggagggct-3'(SEQ ID NO:292)、

5'-tctcctgcgaagagcgaaa-3'(SEQ ID NO:293)、

5'-ctgttgagcgcacctaacc-3'(SEQ ID NO:294)、

5'-cctgaacttttccgtcttc-3'(SEQ ID NO:295)、

5'-gctgttcttgctccaaagg-3'(SEQ ID NO:296)、

5'-aggccgaacgctatgagga-3'(SEQ ID NO:297)、

5'-attgaggagtgtcccgcct-3'(SEQ ID NO:298)、

5'-gtgaccatgtttcctctca-3'(SEQ ID NO:299)、

5'-caagaccactttcgacgag-3'(SEQ ID NO:300),

5'-aacttttccgtcttccact-3'(SEQ ID NO:301)、

5'-tgatcgtaggaattgagga-3'(SEQ ID NO:302)、

5'-ggagagagccagtctgatc-3'(SEQ ID NO:303)、

5'-agcaggccgaacgctatga-3'(SEQ ID NO:304)、

5'-aggacatggcagccttcat-3'(SEQ ID NO:305)、

5'-acgacaagaagcgcatcat-3'(SEQ ID NO:306)、

5'-accatgtttcctctcaata-3'(SEQ ID NO:307)、

5'-tgccgagaggactagtatg-3'(SEQ ID NO:308)、

5'-tctgatcgtaggaattgag-3'(SEQ ID NO:309)、

5'-tgggtgtgaccatgtttcc-3'(SEQ ID NO:310)、

5'-tgaacttttccgtcttcca-3'(SEQ ID NO:311)、

5'-gaattgaggagtgtcccgc-3'(SEQ ID NO:312)、

5'-tttccgtcttccactacga-3'(SEQ ID NO:313)、

5'-ctgctgcctctgatcgtag-3'(SEQ ID NO:314)、

5'-ggccctgaacttttccgtc-3'(SEQ ID NO:315)、

5'-gccaagaccactttcgacg-3'(SEQ ID NO:316)、

5'-tctggccaagaccactttc-3'(SEQ ID NO:317)、

5'-ctgaacttttccgtcttcc-3'(SEQ ID NO:318)、

5'-aagcgcatcattgactcag-3'(SEQ ID NO:319)、

5'-tgttgagcgcacctaacca-3'(SEQ ID NO:320)、

5'-tacctgaagatgaagggtg-3'(SEQ ID NO:321)、

5'-accactttcgacgaggcca-3'(SEQ ID NO:322)、

5'-acgaggccatggctgatct-3'(SEQ ID NO:323)、

5'-gatcccactcttcttgcag-3'(SEQ ID NO:324)、

5'-cttttccgtcttccactac-3'(SEQ ID NO:325)、

5'-gccgagaggactagtatgg-3'(SEQ ID NO:326)、

5'-gctgttgagcgcacctaac-3'(SEQ ID NO:327)、

5'-caggaccaggctacttctc-3'(SEQ ID NO:328)、

5'-cctataagaacgtggtggg-3'(SEQ ID NO:329)、

5'-ctgggtgtgaccatgtttc-3'(SEQ ID NO:330)。

在本说明书中,术语“siRNA”意指对特定基因(例如呼吸道疾病相关基因)具有特异性的siRNA,优选编码双调蛋白或层状蛋白的mRNA。此外,对于本领域技术人员显而易见的是,只要保持对呼吸系统疾病相关基因诸如双调蛋白、层状蛋白等的特异性,具有其中在具有SEQ ID NO:1至SEQ ID NO:330的序列的有义链或与其互补的反义链中取代、缺失或插入一个或多个碱基的序列的siRNA也包括在本发明的范围内。

此外,只要保持对双调蛋白或层状蛋白的特异性,据本发明的siRNA包括其有义链的碱基序列的一部分与双调蛋白或层状蛋白基因的结合位点不重合(即,碱基序列部分错配)的siRNA,以及其有义链的碱基序列与双调蛋白或层状蛋白基因的结合位点完全(100%)互补(即,碱基序列完全匹配结合位点)的siRNA。

本发明的siRNA可包括突出端,其是在单链或双链的3'-末端包含一个或多个未配对核苷酸的结构。

在本发明中,有义链或反义链优选包含19至31个核苷酸,但不限于此。

在本发明中,包括具有选自SEQ ID NO:1至130中任一序列的有义链和具有与其互补的序列的反义链的siRNA可对双调蛋白具有特异性。优选地,双调蛋白特异性siRNA包含具有SEQ ID NO:2、6至9、11、17至21、23、24、28、29、40、42、43、45、46、52、53、58、59、61、63、65、69、75、79、80、81、91、92、94、98、102、115、117、120或128的序列的有义链的反义链,和具有与其互补的序列的反义链,但不限于此。更优选地,双调蛋白特异性siRNA包含具有SEQID NO:8、9、28、59、75、79、80、91、92或102的序列的有义链和具有与其互补的序列的反义链。

在本发明中,包含具有选自SEQ ID NO:131至330的任一序列的有义链和具有与其互补的序列的反义链的siRNA可对层状蛋白具有特异性。优选地,层状蛋白特异性siRNA包含具有SEQ ID NO:231、234、238、241至255、257、258、260至263、267、268、270、272、273、275、278、283、284、290、297、299、300、302、303、307、311、314、320、324、326、327或328的序列的有义链,以及具有与其互补的序列的反义链,但不限于此。更优选地,层状蛋白特异性siRNA包含具有SEQ ID NO:241、248、257、258、263、268、290或327的序列的有义链和具有与其互补的序列的反义链。

在本发明中,siRNA的有义链或反义链可包括用于改善体内稳定性、赋予对核酸酶抗性和减少非特异性免疫应答的各种化学修饰,其中化学修饰可为选自以下的任何一种或多种:通过用仅仅一个选自甲基(-CH

在本发明中,一个或多个磷酸基团,优选1至3个磷酸基团结合到siRNA的反义链的5'-末端。

在另一方面,本发明涉及包含由以下结构式1表示的结构的双链寡RNA结构,其中在以下结构式1中,A为亲水性材料,B为疏水性材料,X和Y各自独立地为简单共价键或接头介导的共价键,并且R为siRNA。

[结构式1]

A-X-R-Y-B

本发明的双链寡RNA的形式可优选为短干扰RNA(siRNA)、短发夹RNA(shRNA)、微小RNA(miRNA)等,但不限于此。还可包括能够用作miRNA拮抗剂的单链miRNA抑制剂。

在下文中,siRNA将主要描述为本发明的双链寡RNA,但是对于本领域技术人员显而易见的是,也可应用与本发明的双链寡RNA具有相同特性的另一种双链寡RNA。

在本发明中,双链寡RNA结构可包含由以下结构式2表示的结构,其中,在以下结构式2中,S和AS分别为结构式1的siRNA的有义链和反义链,A、B、X和Y具有与结构式1中相同的定义。

[结构式2]

A-X-S-Y-B

AS

在本发明中,双链寡RNA结构可包含由以下结构式3所示的结构,其中,在以下结构式3中,A、B、X、Y、S和AS具有与结构式2中相同的定义,并且5'和3'分别为siRNA的有义链的5'-末端和3'-末端。

[结构式3]

A-X-5

AS

在本发明中,双链寡RNA结构包含本发明的呼吸系统疾病相关基因特异性siRNA。根据本发明,在结构式1至3中,可使用shRNA代替siRNA,这对于本领域技术人员是显而易见的。

在本发明中,亲水性材料可为聚乙二醇(PEG)、聚乙烯基吡咯烷酮或聚噁唑啉,并且优选地,亲水性材料的分子量优选为200至10,000,但是亲水性材料不限于此。优选地,亲水性材料为阳离子或非离子聚合物材料。

具体地,结构式1至3中的亲水性材料A可以如下结构式4所示的亲水性材料嵌段的形式使用,并且由使用一般合成性聚合物材料时可能发生的多分散性引起的问题,根据需要可通过使用适当数量的如上所述的亲水性材料嵌段(使用适当数目的结构式4中的n表示)来显著解决。

[结构式4]

(A′m-J)

在结构式4中,A'为亲水性材料单体,J为使m个亲水性材料单体彼此连接(亲水性材料单体的数目为m)或使m个亲水性材料单体和siRNA彼此连接的接头,m为1至15的整数,n为1至10的整数,且由(A'

在结构式4中,作为亲水性材料单体A',可使用非离子亲水性聚合物的任何一种单体,只要其满足本发明的目的即可。优选可使用选自表1所示的化合物(1)至(3),更优选可使用化合物(1)的单体,其中,在化合物(1)中,G优选选自CH

具体地,在亲水性材料单体中,化合物(1)的单体具有可向其中引入各种官能团的优点,并且化合物(1)的单体可在体内具有良好的亲和力,并且几乎不诱导免疫应答等,从而具有优异的生物相容性,并且增加包含在由结构式1至3表示的结构中的寡核苷酸的体内稳定性并提高递送效率,使得化合物(1)的单体显著地适合于制备本发明的结构。

[表1]本发明中亲水性材料单体的结构

优选结构式1至3中亲水性材料的总分子量在1,000至2,000的范围内。因此,例如在使用六甘醇作为化合物(1)的单体的情况下,由于六甘醇间隔基的分子量为344,因此重复数(n)优选为3至5。

具体是,根据本发明,如果需要,结构式4中由(A'

此外,优选的是,接头J选自PO

在本发明中,疏水性材料可为类固醇衍生物、甘油酯衍生物、甘油醚、聚丙二醇、不饱和或饱和(C12-C50)烃、二酰基磷脂酰胆碱、脂肪酸、磷脂、脂多胺、脂质、生育酚或生育三烯酚,其中所述类固醇衍生物可为胆固醇、胆甾烷醇、胆酸、胆固醇甲酸酯、胆甾烷基甲酸酯或胆甾烷基胺,所述甘油酯衍生物可为单甘油酯、二甘油酯或三甘油酯,所述脂质可为阳离子脂质、阴离子脂质或疏水性脂质。此外,疏水性材料的分子量优选为250至1,000,但不限于此。

在本发明中,疏水性材料结合到亲水性材料的相对的远端,并且如果疏水性材料结合到siRNA的有义链或反义链的任何位置都无关紧要。

在本发明中,由X和Y表示的共价键可为不可降解的键或可降解的键。不可降解键可为酰胺键或磷酸化键,并且可降解键可为二硫键、酸可降解键、酯键、酐键、可生物降解键或酶促可降解键,但是本发明不限于此。介导共价键的接头没有特别限制,只要接头可与亲水性材料或疏水性材料以及双调蛋白特异性或层状蛋白特异性siRNA的末端共价结合,并且提供能够在特定环境中分解的键。因此,可使用结合亲水性材料或疏水性材料以活化双调蛋白特异性或层状蛋白特异性siRNA的任何化合物。

在另一方面,本发明涉及包含本发明的双链寡RNA结构的纳米颗粒。本发明的双链寡RNA结构通过疏水性材料的疏水性相互作用形成自组装纳米颗粒(韩国专利公开第1224828号),并且由于这些纳米颗粒具有显著优异的体内递送、优异的体内稳定性和优异的粒径均匀性,可容易进行质量控制(QC),使得作为药物的纳米颗粒的制备方法简单。

更具体地,包含双调蛋白特异性或层状蛋白特异性siRNA的双链寡RNA结构是含有疏水性材料和亲水性材料两者的两亲性结构,其中亲水性部分具有通过诸如氢键等与体内存在的水分子的相互作用的亲和性而朝向外部,并且疏水性材料通过它们之间的疏水性相互作用朝向内部,由此形成热力学稳定的纳米颗粒。也就是说,疏水性材料位于纳米颗粒的中心,并且亲水性材料位于双调蛋白特异性或层状蛋白特异性siRNA的朝外方向,从而以纳米颗粒保护双层调节蛋白特异性或层状蛋白特异性siRNA的形式形成纳米颗粒。如上所述形成的纳米颗粒可改善双调蛋白特异性或层状蛋白特异性siRNA的细胞内递送和双调蛋白特异性或层状蛋白特异性siRNA的效率。

在本发明中,纳米颗粒可仅包含含有具有相同序列的siRNA的双链寡RNA结构,或者由包含彼此具有不同序列的siRNA的双链寡RNA结构的混合物形成。

在另一方面,本发明提供用于预防或治疗纤维化或呼吸系统疾病的药物组合物,其包含作为活性成分的本发明的siRNA、双链寡RNA结构或纳米颗粒。

用于预防或治疗纤维化或呼吸系统疾病的药物组合物可具有通过抑制结缔组织重塑,特别是肺动脉重塑和气道重塑来预防或治疗纤维化或呼吸系统疾病的效果。

在本发明中,呼吸系统疾病可选自COPD、哮喘、急性或慢性支气管炎、过敏性鼻炎、咳嗽和痰、支气管炎、细支气管炎、咽炎、扁桃体炎和喉炎,并且纤维化可选自IPF、肝硬化、骨髓纤维化、心肌纤维化、肾纤维化、肺纤维化、肺癌等,但呼吸系统疾病和纤维化不限于此。

除了如上所述的活性成分之外,本发明的组合物可通过另外添加一种或多种供施用的药学上可接受的载体来制备。药学上可接受的载体需要与本发明的活性成分相容,并且可使用一种或两种或更多种成分的混合物,所述成分选自盐水、无菌水、林格氏溶液、缓冲盐水、葡萄糖溶液、麦芽糖糊精溶液、甘油和乙醇。此外,根据需要,可向其中添加其它常规添加剂,诸如抗氧化剂、缓冲剂、抑菌剂等。此外,通过向其中另外添加稀释剂、分散剂、表面活性剂、粘合剂和润滑剂,可将组合物配制成用于注射的制剂,诸如水溶液、悬浮液、乳液等。具体地,优选提供制备为冻干制剂的组合物。为了制备冻干制剂,可使用本发明所属技术领域中通常已知的任何方法,其中可向其中添加用于冻干的稳定剂。此外,可优选使用本领域的适当方法或披露于Remington's Pharmaceutical Science(Mack PublishingCompany,Easton PA.)的方法根据每种疾病或成分配制组合物。

本发明的组合物可由本领域技术人员基于患者的状况和疾病的严重程度来确定。此外,组合物可配制成各种形式,包括粉末、片剂、胶囊、溶液、注射剂、软膏、糖浆等,并且可作为单位剂量容器或多剂量容器提供,例如密封的安瓿、瓶等。

本发明的组合物可例如口服或肠胃外施用。本发明的组合物的施用途径的实例可包括口服、静脉内、肌内、动脉内、髓内、硬膜内、心内、透皮、皮下、腹膜内、肠内、舌下或局部施用途径,但不限于此。具体地,本发明的组合物还可通过在支气管中滴注输注施用到肺中用于治疗呼吸系统疾病。本发明的组合物的施用剂量可根据患者的体重、年龄、性别、健康状况、饮食、施用时间、施用方法,排泄率或疾病的严重程度等而具有各种范围,并且可由本领域的普通技术人员容易地确定。此外,本发明的组合物可使用本领域已知的方法配制成用于临床施用的适当制剂。

在另一方面,本发明涉及包含本发明的药物组合物的冻干制剂。

在另一方面,本发明涉及制备包含呼吸系统疾病相关基因特异性siRNA的双链寡RNA结构的方法,所述方法包括:(a)结合基于固相支持物的亲水性材料;(b)基于含有与其结合的亲水性材料的固相支持物合成RNA单链;(c)使疏水性材料共价结合到RNA单链的5'末端;(d)合成具有与RNA单链的序列互补的序列的RNA单链;(e)当RNA单链的合成完成时,从固相支持物分离和纯化RNA聚合物结构和RNA单链;和(f)通过退火制备的RNA聚合物结构和具有与其互补的序列的RNA单链,产生双螺旋寡RNA结构。

在本发明中,固相支持物为可控孔径玻璃(CPG)、聚苯乙烯、硅胶、纤维素纸,但不限于此。在固相支持物为CPG的情况下,直径优选为40至180μm,并且孔径优选为500至

在本发明中,步骤(d)在步骤(a)之前进行,或在步骤(a)至(c)和步骤(e)期间的任何一个步骤期间进行。

在本发明中,可通过在步骤(e)之后使用基质辅助的激光解吸/电离飞行时间(MALDI-TOF)质谱仪测量纯化的RNA聚合物结构和纯化的RNA单链的分子量来确证是否制备了期望的RNA聚合物结构和期望的RNA单链。此外,具有与在步骤b)中合成的RNA单链的序列互补的序列的RNA单链以其中磷酸基团与其5'端结合的形式使用。

在另一方面,本发明涉及预防或治疗纤维化或呼吸系统疾病的方法,其包括向有此需要的受试者施用本发明的用于预防或治疗纤维化或呼吸系统疾病的药物组合物的步骤。

在本发明中,呼吸系统疾病可为COPD、哮喘、急性或慢性支气管炎、过敏性鼻炎、咳嗽和痰、支气管炎、细支气管炎、咽炎、扁桃体炎和喉炎,并且纤维化可选自IPF、肝硬化、骨髓纤维化、心肌纤维化、肾纤维化、肺纤维化或肺癌,但不限于此。

在下文中,通过实施例详细描述本发明。然而,这些实施例仅用于说明本发明,并且本领域技术人员应当理解,这些实施例不应解释为限制本发明的范围。因此,本发明的实质范围由所附权利要求及其等同物限定。

实施例1:靶标碱基序列的设计和siRNA的制备

设计能够结合双调蛋白基因(智人)的mRNA序列(NM_001657.2)、层状蛋白基因(智人)的mRNA序列(NM_006142.2)、双调蛋白基因(小鼠)的mRNA序列(NM_009704.2)和层状蛋白基因(小鼠)的mRNA序列(NM_018754.2)的靶标碱基序列(有义链),并且制备具有与靶标碱基序列互补的序列的反义链的siRNA。

首先,使用由Bioneer Co.开发的基因设计程序(Turbo si-Designer),从相应基因的mRNA序列设计siRNA可与其结合的靶标碱基序列。本发明的双调蛋白特异性和层状蛋白特异性siRNA具有包含由19个核苷酸组成的有义链和与其互补的反义链的双链结构。此外,制备(作为有义链(CUUACGCUGAGUACUUCGA(SEQ ID NO:331))的siCONT,其为一种具有不引起任何基因表达抑制的序列的siRNA。通过使用β-氰基乙基亚磷酰胺连接形成RNA骨架结构的磷酸二酯键来制备siRNA(Nucleic Acids Research,12:4539-4557,1984)。具体而言,使用RNA合成仪(384Synthesizer,BIONEER,Korea),在附着了核苷酸的固相支持物上反复进行一系列的脱保护、偶联、氧化和加帽的处理,获得包含具有期望长度的RNA的反应产物。通过装备有Daisogel C18(Daiso,Japan)柱的HPLC LC918(Japan Analytical Industry,Japan)分离并纯化反应产物的RNA,并通过MALDI-TOF质谱仪(Shimadzu,Japan)确证纯化的RNA是否与靶标碱基序列相符。然后,通过使RNA有义链和反义链彼此结合,制备具有期望作为有义链的选自SEQ ID NO:1至331中任一序列的siRNA。

实施例2:双链寡RNA结构(SAMiRNALP)的制备

本发明中制备的双链寡RNA结构(SAMiRNA LP)具有以下结构式5所示的结构。

[结构式5]

C24-5

AS

在结构式5中,S为siRNA的有义链;AS为siRNA的反义链;作为亲水性材料的PEG为聚乙二醇;作为疏水性材料的C24为包含二硫键的二十四烷(tetradocosane);并且5'和3'意指双链寡RNA末端的方向。

为了制备结构式5的siRNA的有义链,在通过连接磷酸二酯键的方法合成聚乙二醇结合到3'-末端的有义链的双链寡RNA-亲水性材料结构后,基于现有专利文献(韩国特开第10-2012-0119212号)中披露的实施例1中的方法制备的3'聚乙二醇(PEG,Mn=2,000)-CPG,如上述方法使用β-氰基乙基亚磷酰胺形成RNA骨架结构作为支持物,并且包含二硫键的二十四烷与其5'末端结合,由此制备期望的RNA聚合物结构的有义链。对于与链一起进行退火的反义链,通过上述反应制备具有与有义链的序列互补的序列的反义链。

当合成完成时,通过在60℃的水浴中处理28%(v/v)氨合成的RNA单链和RNA聚合物结构从CPG中分离,并通过去保护反应除去保护基团。除去保护部分的RNA单链和RNA-聚合物结构在70℃的烘箱中用N-甲基吡咯烷酮、三乙胺和三乙胺三氟化氢以10:3:4的体积比处理,由此除去叔丁基二甲基甲硅烷基(2'TBDMS)。

通过装备有Daisogel C18(Daiso,Japan)柱的HPLC LC918(Japan AnalyticalIndustry,Japan)分离并纯化反应产物的RNA,并通过MALDI-TOF质谱仪(Shimadzu,Japan)确证纯化的RNA是否与靶标碱基序列相符。然后,为了制备各个双链寡RNA结构,将各自具有相同量的有义链和反义链彼此混合,放入1X退火缓冲液(30mM 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES)、100mM乙酸钾、2mM乙酸镁,pH 7.0至7.5)中,在90℃的恒温水浴中反应3分钟,在37℃再次反应,由此制备双链寡RNA结构体,包括具有作为有义链的SEQ ID NO:6、9、28、59、75、79、80、91、92、102、241、248、257、258、263、268、290和327的序列的siRNA(在下文中分别称为SAMiRNALP-mAR、SAMiRNALP-hAR、SAMiRNALP-hSFN和SAMiRNALP-CONT)。确证制备的双链寡RNA结构通过电泳退火。

实施例3:由双链寡RNA结构(SAMiRNALP)制成的纳米颗粒(SAMiRNA)的制备及其尺寸的测量

实施例2制备的双链寡RNA结构体(SAMiRNALP)形成纳米颗粒,即通过与双链寡RNA的末端结合的疏水性材料之间的疏水性相互作用形成胶束(图1)。

其通过分析由SAMiRNALP-hAR、SAMiRNALP-hSFN、SAMiRNALP-mAR、SAMiRNALP-mSFN和SAMiRNALP-CONT形成的纳米颗粒(由相应的SAMiRNA LP形成的纳米颗粒(SAMiRNA))的多分散指数(PDI)确证。

将SAMiRNALP-hAR以50μg/ml的浓度溶于1.5ml Dulbecco磷酸盐缓冲盐水(DPBS)中,将所得混合物在-75℃和5mTorr条件下冷冻干燥48小时以制备纳米颗粒粉末,纳米颗粒粉末溶解在DPBS(溶剂)中,由此制备均匀化的纳米颗粒。

通过相同的方法制备由SAMiRNALP-hSFN、SAMiRNALP-mAR、SAMiRNALP-mSFN和SAMiRNALP-CONT形成的纳米颗粒。

通过ζ电位测量测量纳米颗粒的尺寸。通过ζ电位测量法(Nano-ZS,MALVERN,England),在其中对材料的折射率为1.459,吸收指数为0.001,DPBS(溶剂)的温度为25℃并且相应的粘度和折射指数分别为1.0200和1.335的条件下,测量通过实施例3-1制备的均匀化纳米颗粒的尺寸。通过重复测量尺寸15次进行一次测量,并且重复测量6次。

PDI值越低,相应的颗粒分布越均匀,因此应当理解,本发明的纳米颗粒形成为具有显著均匀的尺寸。

实施例4:使用小鼠成纤维细胞系(NIH3T3)中的小鼠的靶基因特异性siRNA抑制双调蛋白的表达

将作为成纤维细胞系的小鼠成纤维细胞(NIH3T3)用通过实施例1制备的具有SEQID NO:1至30的序列作为有义链的双调蛋白特异性siRNA转换,并且在转化的成纤维细胞系(NIH3T3)中分析双调蛋白的表达模式,即siRNA表达的抑制程度。

将获自美国典型培养物保藏中心(ATCC)的小鼠成纤维细胞系(NIH3T3)在RPMI1640培养基(GIBCO/Invitrogen,USA,10%(v/v)胎牛血清,100单位/ml青霉素,和100μg/ml链霉素)中,在37℃和5%(v/v)CO

将在实施例4-1中培养的1x10

同时,通过将1.5μl Lipofectamine

然后,将500μl的每种转染溶液分配到含有肿瘤细胞系和Opti-MEME的每个孔中,并温育6小时,并除去Opti-MEM培养基。此时,将1ml RPMI1640培养基分配到每个孔中,并在37℃和5%(v/v)CO

通过从在实施例4-2中转染的细胞系中提取总RNA制备cDNA后,使用实时聚合酶链式反应(PCR)相对定量双调蛋白mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例4-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例4-3-1制备的cDNA作为模板,通过实时PCR,通过以下方法定量双调蛋白mRNA的相对量。将实施例4-3-1中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析双调蛋白mRNA的表达量,向其中添加3μl稀释的cDNA,10μl 2XGreenStar

PCR终止后,对于所获得的各靶标基因的循环阈值(Ct)值,计算通过RPL13A基因校正的靶标基因的Ct值,然后使用以具有作为对照组的不引起基因表达抑制的对照序列的siRNA(siCONT)处理的测试组获得Ct值差异(ΔCt)。通过使用ΔCt值和计算方程式2(-ΔCt)x100相对定量用每种双调蛋白特异性siRNA(分别具有SEQ ID NO:1至30的序列作为有义链)处理的细胞中靶标基因的表达量(图2)。

为了选择高效率的siRNA,选择其中与最终浓度为20nM的对照组相比,双调蛋白mRNA的表达量显著降低70%或更多,且具有分别选自SEQ ID NO:2、6至9、11、17至21、23、24、28和29的序列作为有义链的15种siRNA。

[表2]用于qPCR的引物的序列信息

(其中,m表示小鼠特异性序列;h表示人特异性序列,AR表示双调蛋白特异性序列,SFN表示层状蛋白特异性序列,F表示正向引物,且R表示反向引物)

实施例5:使用选自成纤维细胞系(NIH3T3)的siRNA抑制双调蛋白的表达

作为成纤维细胞系的小鼠成纤维细胞(NIH3T3)用在实施例4中选择的分别具有SEQ ID NO:2、6至9、11、17至21、23、24、28和29的序列作为有义链的siRNA转换,分析转换的成纤维细胞系(NIH3T3)中双调蛋白mRNA的表达分布(profile)。

将获自美国典型培养物保藏中心(ATCC)的小鼠成纤维细胞系(NIH3T3)在RPMI1640培养基(GIBCO/Invitrogen,USA,10%(v/v)胎牛血清,100单位/ml青霉素,和100μg/ml链霉素)中,在37℃和5%(v/v)CO

将在实施例5-1中培养的1x10

同时,通过将2μl Lipofectamine

然后,将500μl的每种转染溶液分配到含有分配至其中的Opti-MEME的肿瘤细胞系的每个孔中,并温育6小时,并除去Opti-MEM培养基。此时,将1ml RPMI 1640培养基分配到每个孔中,并在37℃和5%(v/v)CO

通过从在实施例5-2中转染的细胞系中提取总RNA制备cDNA后,使用实时PCR相对定量双调蛋白mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例5-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例5-3-1制备的cDNA作为模板,通过实时PCR,通过以下方法定量双调蛋白mRNA的相对量。将实施例5-3-1中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析双调蛋白mRNA的表达量,向其中添加3μl稀释的cDNA,10μl 2XGreenStar

为了选择高效的siRNA,确证了IC50,其是在用siRNA处理后靶标基因的表达被抑制50%的值,由此选择分别具有SEQ ID NO:8、9和28的序列作为有义链的三种siRNA,显示与对照组相比在5nM的终浓度下双调蛋白mRNA的表达量的最大降低。

实施例6:使用选自成纤维细胞系(NIH3T3)的siRNA抑制双调蛋白的表达

作为成纤维细胞系的小鼠成纤维细胞(NIH3T3)用在实施例5中选择的分别具有SEQ ID NO:8、9和29的序列作为有义链的siRNA转换,分析转换的成纤维细胞系(NIH3T3)中双调蛋白mRNA的表达分布,由此确证siRNA的IC

将获自美国典型培养物保藏中心(ATCC)的小鼠成纤维细胞系(NIH3T3)在RPMI1640培养基(GIBCO/Invitrogen,USA,10%(v/v)胎牛血清,100单位/ml青霉素,和100μg/ml链霉素)中,在37℃和5%(v/v)CO

将在实施例6-1中培养的1x10

同时,通过将2μl Lipofectamine

然后,将500μl的每种转染溶液分配到含有分配至其中的Opti-MEME的肿瘤细胞系的每个孔中,并温育6小时,并除去Opti-MEM培养基。此时,将1ml RPMI 1640培养基分配到其中,并在37℃和5%(v/v)CO

通过从在实施例6-2中转染的细胞系中提取总RNA制备cDNA后,使用实时聚合酶链式反应(PCR)相对定量双调蛋白mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例6-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例6-3-1制备的cDNA作为模板,通过实时PCR,通过以下方法定量双调蛋白mRNA的相对量。将实施例6-3-1中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析双调蛋白mRNA的表达量,向其中添加3μl稀释的cDNA,10μl 2XGreenStar

结果是,在具有SEQ ID NO:8、9和28的序列分别作为有义链的所有双调蛋白特异性siRNA的情况下,双调蛋白mRNA的表达量甚至在0.2nM的低浓度也减少50%或更多。因此,确证双调蛋白特异性siRNA具有高效抑制双调蛋白表达的效果。

实施例7:靶标碱基序列的设计和siRNA的制备

作为肺肿瘤细胞系的人肺癌细胞系(A549)用在实施例1中制备的分别具有SEQ IDNO:31至130和231至330的序列作为有义链的siRNA转换,并分析转换的肺癌细胞系(A549)中靶标基因的表达分布。

将获自美国典型培养物保藏中心(ATCC)的人肺癌细胞系(A549)在DMEM培养基(GIBCO/Invitrogen,USA,10%(v/v)胎牛血清,100单位/ml青霉素,和100μg/ml链霉素)中,在37℃和5%(v/v)CO

将在实施例7-1中培养的1.2x10

同时,通过将3.5μl Lipofectamine

然后,将500μl的每种转染溶液分配到含有分配至其中的Opti-MEME的肿瘤细胞系的每个孔中,并温育6小时,并除去Opti-MEM培养基。此时,将1ml RPMI 1640培养基分配到其中,并在37℃和5%(v/v)CO

通过以与实施例4-3中相同的方法从在实施例7-2中转染的细胞系中提取总RNA制备cDNA后,使用实时聚合酶链式反应(PCR)相对定量靶标基因mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例7-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例7-4制备的cDNA作为模板,通过实时PCR,通过以下方法定量呼吸系统疾病相关基因mRNA的相对量。将实施例7-4中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析靶标基因mRNA的表达量,向其中添加3μl稀释的cDNA,25μl 2XGreenStar

通过使用ΔCt值和计算方程式2(-ΔCt)x100相对定量用每种双调蛋白(智人)特异性siRNA(分别具有作为有义链的SEQ ID NO:31至130的序列)处理的细胞中靶标基因的表达量(图4)。

此外,相对定量用每种层状蛋白(智人)特异性siRNA(分别具有SEQ IDNO:231至330的序列作为有义链)处理的细胞中靶标基因的表达量。

结果是,在26种人双调蛋白特异性siRNA和47种人层状蛋白特异性siRNA的情况下,本发明中,在1nM的浓度,靶标基因的表达抑制50%或更高,并且因此可确证这些siRNA高效地抑制靶基因的表达(参见图6和图7)。

实施例8:选择针对人肺癌细胞系(A549)的高效双调蛋白和层状蛋白特异性siRNA

使用分别具有实施例7-5中选择的序列作为有义链的26种人双调蛋白特异性siRNA和47种人层状蛋白特异性siRNA转换人肺癌细胞系(A549),并且分析转换的肺癌细胞系(A549)中的靶标基因的表达分布,从而选择高效的siRNA。

将获自美国典型培养物保藏中心(ATCC)的人肺癌细胞系(A549)在与实施例7-1中相同的条件下培养。

将在实施例8-1中培养的1.2x10

同时,通过将3.5μl Lipofectamine

然后,将500μl的每种转染溶液分配到含有分配至其中的Opti-MEME的肿瘤细胞系的每个孔中,并温育6小时,并除去Opti-MEM培养基。此时,将1ml RPMI 1640培养基分配到其中,并在37℃和5%(v/v)CO

通过以与实施例4-3中相同的方法从在实施例8-2中转染的细胞系中提取总RNA制备cDNA后,使用实时聚合酶链式反应(PCR)相对定量靶标基因mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例8-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例8-4制备的cDNA作为模板,通过实时PCR,通过以下方法定量呼吸系统疾病相关基因mRNA的相对量。将实施例8-4中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析靶标基因mRNA的表达量,向其中添加3μl稀释的cDNA,25μl 2XGreenStar

通过使用ΔCt值和计算方程式2(-ΔCt)x100相对定量用每种双调蛋白(智人)特异性siRNA处理的细胞中靶标基因的表达量(图6)。

此外,相对定量用每种层状蛋白(智人)特异性siRNA处理的细胞中靶标基因的表达量(图7)。

结果是,在7种高效人双调蛋白特异性siRNA(SEQ ID NO:59、75、79、80、91、92和102)的情况下,本发明中,在0.2nM的浓度,人双调蛋白的表达被抑制70%或更多,并且在8种高效人类层状蛋白特异性siRNA(SEQ ID NOS:241、248、257、258、263、268、290和327)的情况下,在本发明中,在0.2nM的浓度,人层状蛋白的表达被抑制60%或更多。因此,可确证这些siRNA可高效地抑制靶标基因的表达。

实施例9:使用由SAMiRNA制成的纳米颗粒在肿瘤细胞系中抑制靶标基因的表达

使用实施例3-1中制备的由SAMiRNA制成的纳米颗粒转换人肺癌细胞系(A549),所述制备使用分别具有在实施例8-5中选择的SEQ ID NO:79、80和91的序列作为有义链的3种人双调蛋白特异性siRNA和具有SEQ ID NO:248、257、268、290和327的序列作为有义链的5种人类肺癌细胞系(A549)进行,并且分析转换的肺癌细胞系(A549)中靶基因的表达分布。

将获自美国典型培养物保藏中心(ATCC)的人肺癌细胞系(A549)在与实施例7-1中相同的条件下培养。

将在实施例9-1中培养的0.8x10

通过以与实施例4-3中相同的方法从在实施例8-2中转染的细胞系中提取总RNA制备cDNA后,使用实时聚合酶链式反应(PCR)相对定量靶标基因mRNA的表达量。

使用RNA提取试剂盒(AccuPrep Cell total RNA extraction kit,BIONEER,Korea),从在实施例9-2中转染的细胞系中提取总RNA,并且根据以下方法使用提取的RNA通过RNA逆转录酶(AccuPower CycleScript RT Premix/dT20,Bioneer,Korea)制备cDNA。具体地,将提取的RNA(1μg/管)添加到包含在0.25ml Eppendorf管中的AccuPowerCycleScript RT Premix/dT20(Bioneer,Korea)中,向其中添加用焦碳酸二乙酯(DEPC)处理的蒸馏水,使得总体积为20μl。将RNA和引物在30℃通过基因扩增器(MyGenie

使用通过实施例9-4制备的cDNA作为模板,通过实时PCR,通过以下方法定量呼吸系统疾病相关基因mRNA的相对量。将实施例9-4中制备的cDNA用蒸馏水在96孔板的各孔中稀释5倍。然后,为了分析靶标基因mRNA的表达量,向其中添加3μl稀释的cDNA,25μl 2XGreenStar

通过使用ΔCt值和计算方程式2(-ΔCt)x100相对定量用每种双调蛋白(智人)特异性SAMiRNA处理的细胞中靶标基因的表达量(图8)。

此外,相对定量用每种层状蛋白(智人)特异性SAMiRNA处理的细胞中靶标基因的表达量。

结果是,证实在用浓度为500nM或200nM的SAMiRNA-hAR(#80)和SAMiRNA-hSFN(#248,#290)处理人肺癌细胞系(A549)时,人肺癌细胞系(A549)的靶标基因的表达被抑制70%。

工业实用性

由于本发明的siRNA可显著有效地抑制呼吸系统疾病相关基因,特别是双调蛋白或层状蛋白的表达,本发明的siRNA,含有该siRNA的双链寡RNA结构和含有该双链寡RNA结构的纳米颗粒可用于预防或治疗纤维化或呼吸系统疾病。

尽管已经基于本发明的特定特征详细描述了本发明,但是对于本领域技术人员显而易见的是,这些具体技术仅仅是优选的实施方案,因此本发明的范围不限于这些实施方案。因此,本发明的实质范围由所附权利要求及其等同物限定。

<110> 柏业公司

<120> 新颖的双链寡RNA和包含它的用于预防或治疗纤维化或呼吸系统疾病的药物组合物

<130> PP-B1568

<150> KR 10-2014-0040699

<151> 2014-04-04

<160> 343

<170> KopatentIn 2.0

<210> 1

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 1

ggaguaugau aaugaacca 19

<210> 2

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 2

caguaguagc ugucacuau 19

<210> 3

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 3

agacucacag cgaggauga 19

<210> 4

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 4

cacaaauauc cggcuauau 19

<210> 5

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 5

caccauaagc gaaaugccu 19

<210> 6

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 6

gauuacuuug gugaacggu 19

<210> 7

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 7

caguugucac uuuuuauga 19

<210> 8

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 8

ggaccuaucc aagauugca 19

<210> 9

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 9

cguuaucaca gugcaccuu 19

<210> 10

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 10

ccuagcugag gacaaugca 19

<210> 11

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 11

ccuagcugag gacaaugca 19

<210> 12

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 12

cucagaggag uaugauaau 19

<210> 13

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 13

cgguggacuu gagcuuucu 19

<210> 14

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 14

gguggugaca ugcaauugu 19

<210> 15

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 15

cagggaauau gaaggagaa 19

<210> 16

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 16

ggaggcuucg acaagaaaa 19

<210> 17

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 17

ccgguggaac caaugagaa 19

<210> 18

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 18

ccggcuauau uauagauga 19

<210> 19

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 19

agaauccaug cacugccaa 19

<210> 20

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 20

caaggaccua uccaagauu 19

<210> 21

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 21

caaauauccg gcuauauua 19

<210> 22

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 22

gggacuacga cuacucaga 19

<210> 23

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 23

gcgaaugcag auacaucga 19

<210> 24

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 24

gccacaccgg aaaugacau 19

<210> 25

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 25

agaguugaac aggugauua 19

<210> 26

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 26

gaaccacaaa uauccggcu 19

<210> 27

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 27

cauaagcgaa augccuucu 19

<210> 28

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 28

guuuccacca uaagcgaaa 19

<210> 29

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 29

caggugauua agcccaaga 19

<210> 30

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 30

ccacaccgga aaugacauu 19

<210> 31

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 31

gagtgaaatg ccttctagt 19

<210> 32

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 32

cagagttgaa caggtagtt 19

<210> 33

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 33

ctggattgga cctcaatga 19

<210> 34

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 34

gaaaactcac agcatgatt 19

<210> 35

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 35

gaaacttcga caagagaat 19

<210> 36

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 36

caggaaatat gaaggagaa 19

<210> 37

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 37

gcaaatatat agagcacct 19

<210> 38

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 38

ggtgctgtcg ctcttgata 19

<210> 39

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 39

tcagagttga acaggtagt 19

<210> 40

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 40

gaaagaaact tcgacaaga 19

<210> 41

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 41

gacaatacgt caggaaata 19

<210> 42

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 42

caggatatca cattggagt 19

<210> 43

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 43

ctctttccag tggatcata 19

<210> 44

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 44

cggctcaggc cattatgct 19

<210> 45

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 45

ggaccacagt gctgatgga 19

<210> 46

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 46

gctgctggat tggacctca 19

<210> 47

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 47

gttattacag tccagctta 19

<210> 48

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 48

tggacctcaa tgacaccta 19

<210> 49

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 49

ctggctatat tgtcgatga 19

<210> 50

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 50

gacggaaagt gaaaatact 19

<210> 51

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 51

gtatgataac gaaccacaa 19

<210> 52

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 52

acattggagt cactgccaa 19

<210> 53

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 53

ccaagtcata gccataaat 19

<210> 54

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 54

agtgaaatgc cttctagta 19

<210> 55

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 55

gataacgaac cacaaatac 19

<210> 56

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 56

tgcattagca gccatagct 19

<210> 57

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 57

gcattcacgg agaatgcaa 19

<210> 58

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 58

ggagtcactg ccaagtcat 19

<210> 59

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 59

aggtgcacga aggtaaaaa 19

<210> 60

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 60

cagcatgatt gacagtagt 19

<210> 61

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 61

cttagaagac aatacgtca 19

<210> 62

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 62

agagttgaac aggtagtta 19

<210> 63

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 63

tgatgagtcg gtcctcttt 19

<210> 64

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 64

atatatagag cacctggaa 19

<210> 65

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 65

gagttgaaca ggtagttaa 19

<210> 66

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 66

cattcacgga gaatgcaaa 19

<210> 67

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 67

ggaccctttt tgttatgat 19

<210> 68

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 68

cagaagagta tgataacga 19

<210> 69

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 69

ccagtggatc ataagacaa 19

<210> 70

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 70

gctgttatta cagtccagc 19

<210> 71

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 71

gggaagcgtg aaccatttt 19

<210> 72

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 72

cacagtgctg atggatttg 19

<210> 73

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 73

agtcagagtt gaacaggta 19

<210> 74

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 74

tggaagcagt aacatgcaa 19

<210> 75

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 75

cacgaaggta aaaagtatt 19

<210> 76

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 76

agaagagtat gataacgaa 19

<210> 77

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 77

gaagcgtgaa ccattttct 19

<210> 78

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 78

ggctatattg tcgatgatt 19

<210> 79

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 79

gagtcactgc caagtcata 19

<210> 80

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 80

caatggaccc tttttgtta 19

<210> 81

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 81

gcacgaaggt aaaaagtat 19

<210> 82

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 82

tgaaatgcct tctagtagt 19

<210> 83

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 83

tggatcataa gacaatgga 19

<210> 84

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 84

gtgagtgaaa tgccttcta 19

<210> 85

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 85

gacctcaatg acacctact 19

<210> 86

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 86

cctcaatgac acctactct 19

<210> 87

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 87

gctgatggat ttgaggtta 19

<210> 88

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 88

ggaagcagta acatgcaaa 19

<210> 89

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 89

cagtaacatg caaatgtca 19

<210> 90

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 90

gctatagcat aactgaaga 19

<210> 91

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 91

ggatatcaca ttggagtca 19

<210> 92

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 92

ccctttttgt tatgatggt 19

<210> 93

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 93

gtatataaag gtgcacgaa 19

<210> 94

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 94

ggacctcaat gacacctac 19

<210> 95

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 95

gctcttgata ctcggctca 19

<210> 96

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 96

tgctgctgga ttggacctc 19

<210> 97

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 97

gaaccacaaa tacctggct 19

<210> 98

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 98

cggtcctctt tccagtgga 19

<210> 99

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 99

ttccaacacc cgctcgttt 19

<210> 100

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 100

agagcacctg gaagcagta 19

<210> 101

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 101

tctttccagt ggatcataa 19

<210> 102

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 102

cctttttgtt atgatggtt 19

<210> 103

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 103

cacctggaag cagtaacat 19

<210> 104

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 104

ctgaggaacg aaagaaact 19

<210> 105

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 105

gtgaaatgcc ttctagtag 19

<210> 106

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 106

ctactctggg aagcgtgaa 19

<210> 107

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 107

ctgggaagcg tgaaccatt 19

<210> 108

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 108

actactcaga agagtatga 19

<210> 109

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 109

catgcaaatg tcagcaaga 19

<210> 110

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 110

tgaggttacc tcaagaagt 19

<210> 111

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 111

actcggctca ggccattat 19

<210> 112

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 112

ttcacggaga atgcaaata 19

<210> 113

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 113

ctgctggatt ggacctcaa 19

<210> 114

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 114

tgattcagtc agagttgaa 19

<210> 115

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 115

tgccaagtca tagccataa 19

<210> 116

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 116

ctcaagaagt gagatgtct 19

<210> 117

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 117

gccaagtcat agccataaa 19

<210> 118

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 118

ctcagaagag tatgataac 19

<210> 119

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 119

ttctgcattc acggagaat 19

<210> 120

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 120

taagacaatg gaccctttt 19

<210> 121

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 121

aggttacctc aagaagtga 19

<210> 122

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 122

aatgccttct agtagtgaa 19

<210> 123

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 123

atgattcagt cagagttga 19

<210> 124

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 124

aaacaagacg gaaagtgaa 19

<210> 125

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 125

tttctgcatt cacggagaa 19

<210> 126

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 126

caaatacctg gctatattg 19

<210> 127

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 127

tcttccaaca cccgctcgt 19

<210> 128

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 128

gaagcagtaa catgcaaat 19

<210> 129

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 129

gatgattcag tcagagttg 19

<210> 130

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 130

tgcattcacg gagaatgca 19

<210> 131

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 131

ctcagtgagg actcctaca 19

<210> 132

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 132

cactacgaga tagccaaca 19

<210> 133

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 133

cagtcttcca ctacgagat 19

<210> 134

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 134

agctcctgag agacaacct 19

<210> 135

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 135

tcagtcttcc actacgaga 19

<210> 136

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 136

agagacaacc tgacgctgt 19

<210> 137

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 137

ccgaacggta tgaagacat 19

<210> 138

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 138

ctgaacaggc cgaacggta 19

<210> 139

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 139

ctcctgagag acaacctga 19

<210> 140

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 140

gacatggcag ctttcatga 19

<210> 141

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 141

cgaacggtat gaagacatg 19

<210> 142

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 142

agtaccggga gaaggtaga 19

<210> 143

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 143

acttttcagt cttccacta 19

<210> 144

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 144

gcatcgagca gaagagcaa 19

<210> 145

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 145

gcgaaacctg ctttccgta 19

<210> 146

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 146

gtgaaagagt accgggaga 19

<210> 147

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 147

gcgatgacaa gaagcgcat 19

<210> 148

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 148

agtcttccac tacgagata 19

<210> 149

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 149

tcagtgagga ctcctacaa 19

<210> 150

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 150

ggtagagacc gagctcaga 19

<210> 151

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 151

ccgaggtgaa agagtaccg 19

<210> 152

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 152

caggccgaac ggtatgaag 19

<210> 153

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 153

cggtatgaag acatggcag 19

<210> 154

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 154

tgctggactc gcacctcat 19

<210> 155

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 155

aagaagcgca tcatcgatt 19

<210> 156

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 156

ctggactcgc acctcatca 19

<210> 157

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 157

ggactcgcac ctcatcaaa 19

<210> 158

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 158

gaagcgcatc atcgattct 19

<210> 159

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 159

gtcttccact acgagatag 19

<210> 160

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 160

aaggtagaga ccgagctca 19

<210> 161

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 161

agcgaaacct gctttccgt 19

<210> 162

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 162

gactactacc gctacctag 19

<210> 163

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 163

cagagagccg cgtcttcta 19

<210> 164

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 164

gatgacaaga agcgcatca 19

<210> 165

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 165

catcgagcag aagagcaac 19

<210> 166

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 166

tgcagctcct gagagacaa 19

<210> 167

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 167

acggtatgaa gacatggca 19

<210> 168

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 168

tggactcgca cctcatcaa 19

<210> 169

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 169

ggcgatgaca agaagcgca 19

<210> 170

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 170

tgaacaggcc gaacggtat 19

<210> 171

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 171

aggccgaacg gtatgaaga 19

<210> 172

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 172

tcgagcagaa gagcaacga 19

<210> 173

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 173

tccactacga gatagccaa 19

<210> 174

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 174

ggtgaaagag taccgggag 19

<210> 175

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 175

gccgaacggt atgaagaca 19

<210> 176

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 176

aggagatgcc gcctaccaa 19

<210> 177

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 177

ggagcgaaac ctgctttcc 19

<210> 178

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 178

cagtgaggac tcctacaag 19

<210> 179

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 179

agcgcatcat cgattctgc 19

<210> 180

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 180

catcatgcag ctcctgaga 19

<210> 181

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 181

gccgcgtctt ctacctgaa 19

<210> 182

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 182

gagacaacct gacgctgtg 19

<210> 183

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 183

cgatgacaag aagcgcatc 19

<210> 184

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 184

cttccactac gagatagcc 19

<210> 185

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 185

ccactacgag atagccaac 19

<210> 186

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 186

gctcctgaga gacaacctg 19

<210> 187

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 187

atcatcgatt ctgcccggt 19

<210> 188

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 188

tgagagacaa cctgacgct 19

<210> 189

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 189

agacatggca gctttcatg 19

<210> 190

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 190

tcttccacta cgagatagc 19

<210> 191

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 191

gaacaggccg aacggtatg 19

<210> 192

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 192

atgcagctcc tgagagaca 19

<210> 193

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 193

accgagctca gaggtgtgt 19

<210> 194

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 194

cctgagagac aacctgacg 19

<210> 195

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 195

cacaccctca gtgaggact 19

<210> 196

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 196

ttccactacg agatagcca 19

<210> 197

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 197

acatggcagc tttcatgaa 19

<210> 198

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 198

tgacaagaag cgcatcatc 19

<210> 199

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 199

aaggagatgc cgcctacca 19

<210> 200

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 200

cttttcagtc ttccactac 19

<210> 201

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 201

tcctgagaga caacctgac 19

<210> 202

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 202

gcagctcctg agagacaac 19

<210> 203

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 203

agccgcgtct tctacctga 19

<210> 204

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 204

attctgcccg gtcagccta 19

<210> 205

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 205

actcgcacct catcaaagg 19

<210> 206

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 206

agaccgagct cagaggtgt 19

<210> 207

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 207

gactcgcacc tcatcaaag 19

<210> 208

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 208

agaagcgcat catcgattc 19

<210> 209

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 209

gggtgactac taccgctac 19

<210> 210

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 210

caagaccacc ttcgacgag 19

<210> 211

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 211

ctacgagata gccaacagc 19

<210> 212

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 212

tttcagtctt ccactacga 19

<210> 213

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 213

aggtgaaaga gtaccggga 19

<210> 214

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 214

aagcgcatca tcgattctg 19

<210> 215

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 215

gcatcatcga ttctgcccg 19

<210> 216

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 216

aacggtatga agacatggc 19

<210> 217

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 217

atcgagcaga agagcaacg 19

<210> 218

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 218

actactaccg ctacctagc 19

<210> 219

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 219

ttttcagtct tccactacg 19

<210> 220

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 220

acgagatagc caacagccc 19

<210> 221

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 221

actaccgcta cctagccga 19

<210> 222

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 222

actacgagat agccaacag 19

<210> 223

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 223

cccgaggtga aagagtacc 19

<210> 224

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 224

cagctcctga gagacaacc 19

<210> 225

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 225

catcgattct gcccggtca 19

<210> 226

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 226

gagagacaac ctgacgctg 19

<210> 227

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 227

gcgcatcatc gattctgcc 19

<210> 228

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 228

gaaggtagag accgagctc 19

<210> 229

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 229

tcatcgattc tgcccggtc 19

<210> 230

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 230

gaacggtatg aagacatgg 19

<210> 231

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 231

cgtaggaatt gaggagtgt 19

<210> 232

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 232

cactacgaga tcgccaaca 19

<210> 233

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 233

gctgtccagt attgagcag 19

<210> 234

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 234

gaccatgttt cctctcaat 19

<210> 235

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 235

cgagacaacc tgacactgt 19

<210> 236

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 236

cgtcttccac tacgagatc 19

<210> 237

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 237

cctgcgaaga gcgaaacct 19

<210> 238

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 238

gctgcctctg atcgtagga 19

<210> 239

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 239

ccaagaccac tttcgacga 19

<210> 240

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 240

gtctgctggg tgtgaccat 19

<210> 241

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 241

ctctgatcgt aggaattga 19

<210> 242

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 242

gctgggtgtg accatgttt 19

<210> 243

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 243

gctgggtgtg accatgttt 19

<210> 244

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 244

cgacaagaag cgcatcatt 19

<210> 245

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 245

ctgccgagag gactagtat 19

<210> 246

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 246

gcctctgatc gtaggaatt 19

<210> 247

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 247

gcgctgttct tgctccaaa 19

<210> 248

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 248

ctgcctctga tcgtaggaa 19

<210> 249

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 249

gccctgaact tttccgtct 19

<210> 250

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 250

tgcctctgat cgtaggaat 19

<210> 251

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 251

tgaccatgtt tcctctcaa 19

<210> 252

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 252

ccatgtttcc tctcaataa 19

<210> 253

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 253

ggtgacgaca agaagcgca 19

<210> 254

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 254

acttttccgt cttccacta 19

<210> 255

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 255

tccgtcttcc actacgaga 19

<210> 256

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 256

ctctcctgcg aagagcgaa 19

<210> 257

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 257

ccaggaccag gctacttct 19

<210> 258

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 258

cctgctgcct ctgatcgta 19

<210> 259

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 259

ccgaacgcta tgaggacat 19

<210> 260

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 260

ccctgaactt ttccgtctt 19

<210> 261

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 261

ccgtcttcca ctacgagat 19

<210> 262

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 262

gagacaacct gacactgtg 19

<210> 263

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 263

gcatgtctgc tgggtgtga 19

<210> 264

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 264

tggctgagaa ctggacagt 19

<210> 265

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 265

gccgaacgct atgaggaca 19

<210> 266

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 266

ctgtccagta ttgagcaga 19

<210> 267

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 267

gtattgagca gaaaagcaa 19

<210> 268

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 268

cagctgttga gcgcaccta 19

<210> 269

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 269

gacaacctga cactgtgga 19

<210> 270

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 270

tggagagagc cagtctgat 19

<210> 271

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 271

cgaacgctat gaggacatg 19

<210> 272

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 272

ggtgctgtcc agtattgag 19

<210> 273

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 273

gaagcgcatc attgactca 19

<210> 274

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 274

tcgtaggaat tgaggagtg 19

<210> 275

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 275

gctgcgagac aacctgaca 19

<210> 276

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 276

tgctgtccag tattgagca 19

<210> 277

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 277

ctgttcttgc tccaaaggg 19

<210> 278

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 278

cctctgatcg taggaattg 19

<210> 279

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 279

ccaccggtga cgacaagaa 19

<210> 280

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 280

gtcttccact acgagatcg 19

<210> 281

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 281

ctacctgaag atgaagggt 19

<210> 282

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 282

ctataagaac gtggtgggc 19

<210> 283

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 283

ctctggccaa gaccacttt 19

<210> 284

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 284

cgctgttctt gctccaaag 19

<210> 285

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 285

ccactttcga cgaggccat 19

<210> 286

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 286

tgagaactgg acagtggca 19

<210> 287

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 287

ctggccaaga ccactttcg 19

<210> 288

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 288

ttgagcagaa aagcaacga 19

<210> 289

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 289

tgcgagacaa cctgacact 19

<210> 290

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 290

agctgttgag cgcacctaa 19

<210> 291

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 291

gaacttttcc gtcttccac 19

<210> 292

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 292

aaaagcaacg aggagggct 19

<210> 293

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 293

tctcctgcga agagcgaaa 19

<210> 294

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 294

ctgttgagcg cacctaacc 19

<210> 295

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 295

cctgaacttt tccgtcttc 19

<210> 296

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 296

gctgttcttg ctccaaagg 19

<210> 297

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 297

aggccgaacg ctatgagga 19

<210> 298

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 298

attgaggagt gtcccgcct 19

<210> 299

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 299

gtgaccatgt ttcctctca 19

<210> 300

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 300

caagaccact ttcgacgag 19

<210> 301

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 301

aacttttccg tcttccact 19

<210> 302

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 302

tgatcgtagg aattgagga 19

<210> 303

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 303

ggagagagcc agtctgatc 19

<210> 304

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 304

agcaggccga acgctatga 19

<210> 305

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 305

aggacatggc agccttcat 19

<210> 306

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 306

acgacaagaa gcgcatcat 19

<210> 307

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 307

accatgtttc ctctcaata 19

<210> 308

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 308

tgccgagagg actagtatg 19

<210> 309

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 309

tctgatcgta ggaattgag 19

<210> 310

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 310

tgggtgtgac catgtttcc 19

<210> 311

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 311

tgaacttttc cgtcttcca 19

<210> 312

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 312

gaattgagga gtgtcccgc 19

<210> 313

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 313

tttccgtctt ccactacga 19

<210> 314

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 314

ctgctgcctc tgatcgtag 19

<210> 315

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 315

ggccctgaac ttttccgtc 19

<210> 316

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 316

gccaagacca ctttcgacg 19

<210> 317

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 317

tctggccaag accactttc 19

<210> 318

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 318

ctgaactttt ccgtcttcc 19

<210> 319

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 319

aagcgcatca ttgactcag 19

<210> 320

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 320

tgttgagcgc acctaacca 19

<210> 321

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 321

tacctgaaga tgaagggtg 19

<210> 322

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 322

accactttcg acgaggcca 19

<210> 323

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 323

acgaggccat ggctgatct 19

<210> 324

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 324

gatcccactc ttcttgcag 19

<210> 325

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 325

cttttccgtc ttccactac 19

<210> 326

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 326

gccgagagga ctagtatgg 19

<210> 327

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 327

gctgttgagc gcacctaac 19

<210> 328

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 328

caggaccagg ctacttctc 19

<210> 329

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 329

cctataagaa cgtggtggg 19

<210> 330

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siRNA

<400> 330

ctgggtgtga ccatgtttc 19

<210> 331

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> siCONT

<400> 331

cuuacgcuga guacuucga 19

<210> 332

<211> 21

<212> RNA

<213> 人工序列

<220>

<223> mRPL13A-F

<400> 332

cgatagtgca tcttggcctt t 21

<210> 333

<211> 21

<212> RNA

<213> 人工序列

<220>

<223> mRPL13A-R

<400> 333

cctgctgctc tcaaggttgt t 21

<210> 334

<211> 20

<212> RNA

<213> 人工序列

<220>

<223> hRPL13A-F

<400> 334

agctcatgag gctacggaaa 20

<210> 335

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> hRPL13A-R

<400> 335

cgtacattcc agggcaaca 19

<210> 336

<211> 21

<212> RNA

<213> 人工序列

<220>

<223> mAR-F

<400> 336

ggtcttaggc tcaggccatt a 21

<210> 337

<211> 20

<212> RNA

<213> 人工序列

<220>

<223> mAR-R

<400> 337

cgcttatggt ggaaacctct 20

<210> 338

<211> 20

<212> RNA

<213> 人工序列

<220>

<223> hAR-F

<400> 338

acacctactc tgggaagcgt 20

<210> 339

<211> 20

<212> RNA

<213> 人工序列

<220>

<223> hAR-R

<400> 339

gccaggtatt tgtggttcgt 20

<210> 340

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> mSFN-F

<400> 340

gtgtgtgcga caccgtact 19

<210> 341

<211> 19

<212> RNA

<213> 人工序列

<220>

<223> mSFN-R

<400> 341

ctcggctagg tagcggtag 19

<210> 342

<211> 21

<212> RNA

<213> 人工序列

<220>

<223> hSFN-F

<400> 342

agaagcgcat cattgactca g 21

<210> 343

<211> 21

<212> RNA

<213> 人工序列

<220>

<223> hSFN-R

<400> 343

tctcgtagtg gaagacggaa a 21

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号