首页> 中国专利> 电化学法制备硅纳米粉、硅纳米线和硅纳米管中的一种或几种的方法

电化学法制备硅纳米粉、硅纳米线和硅纳米管中的一种或几种的方法

摘要

本发明提供一种从化合物SiX或包含化合物SiX的混合物直接制备硅纳米粉末、纳米线(管)的电化学方法。其特性是:以化合物SiX或包含化合物SiX的混合物为阴极,设置阳极,置于包含金属化合物熔盐的电解质中,在阴极和阳极之间施加电压,控制反应条件,在阴极制得硅纳米粉末、纳米线(管)。本发明生产流程短、无污染、操作简单、原料易得、设备便宜,易于连续生产,同时为电化学法的应用于一维纳米材料的制备开辟了一个新领域,为制备硅纳米粉末、纳米线(管)探索出一条新途径。

著录项

  • 公开/公告号CN101736354A

    专利类型发明专利

  • 公开/公告日2010-06-16

    原文格式PDF

  • 申请/专利权人 北京有色金属研究总院;

    申请/专利号CN200810225926.5

  • 发明设计人 卢世刚;杨娟玉;张向军;阚素荣;

    申请日2008-11-06

  • 分类号C25B1/00(20060101);C30B29/06(20060101);C30B29/62(20060101);C30B30/02(20060101);C01B33/021(20060101);

  • 代理机构11100 北京北新智诚知识产权代理有限公司;

  • 代理人程凤儒

  • 地址 100088 北京市新街口外大街2号

  • 入库时间 2023-12-18 00:27:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-04-13

    专利权的转移 IPC(主分类):C25B1/00 登记生效日:20160321 变更前: 变更后: 申请日:20081106

    专利申请权、专利权的转移

  • 2011-11-16

    授权

    授权

  • 2010-09-01

    实质审查的生效 IPC(主分类):C25B1/00 申请日:20081106

    实质审查的生效

  • 2010-06-16

    公开

    公开

说明书

技术领域

本发明涉及一种电化学法制备硅的纳米粉末、纳米线(管)的方法。

背景技术

一维纳米硅线(管)材料以其独特的电学、光学特性及高表面活性,引起了研究者们的广泛关注。目前硅纳米线(管)制备方法多种多样,其中包括激光烧蚀法[Morales A M,Lieber C M.Science,1998,279(9):208~211;Lee C S,Wang N,Tang Y H,et al.MRS.Bulletin.,1999:36~41]、化学气相沉积(CVD)[Wang N L,Zhang Y J,Zhu J.Journal of Materials Science Letters,2001,20:89~91]、等离子体增强化学气相沉积(PECVD)[Zeng X B,Xu Y Y,Zhang S B,et al.Journal of CrystalGrowth,2003,247(1):13~16]、热气相沉积[Feng S Q,Yu D P,Zhang H Z,et al.Journal of Crystal Growth,2000,209:513~517]、溶液法[Holmes J D,Johnston K P,Doty R C,et al.Science,2000,287:1471~1473]、模板法[KokKeong L,Joan M R.Journal of Crystal Growth,2003,254(1):14~22]、水热法[Pei L Z,Tang Y H,Chen YW,et al.Journal of Crystal Growth,2005,289:423~427]等方法。激光烧蚀法制备的硅纳米线具有产量比较大、纯度高等优点,但设备昂贵,产品成本高;化学气相沉积法和热气相沉积法的生产成本相对较低,但制得的硅纳米线直径分布范围较大且在纳米线中含有大量的纳米粒子链;溶液法虽然能制备出高长径比的硅纳米线,但需贵金属作催化剂,同时溶剂为有机物且有毒,对环境污染很大;其他方法如模板法等则产量很低。现有的制备硅纳米线的方法各有其优缺点,制约了硅纳米线在工业领域的应用。

在熔盐体系中,采用电化学法从固体化合物中直接电解制备金属、合金和某些非金属的工艺是由英国剑桥大学的Fray Derek John、Farthing Thomas William和Chen Zheng共同提出来的,所以又称为FFC剑桥工艺。FFC剑桥工艺具有很多传统工艺无法比拟的优点,该方法以固态化合物为原料经一步电解得到金属或半金属或合金,不仅缩短了工艺流程,也减少了能耗和环境污染,从而可大幅度地减低难熔金属或合金的冶炼成本;同时,由于原料的组成和还原程度可控,异很适合于功能材料的制备。该研究小组公布的世界专利“Removal of oxygenfrom metal oxides and solid solutions by Electrolysis in a fused salt”(WO1999/064638)和世界专利“Metal and alloy powders and powderfabrication”(WO2002/040725)中都包括了由固体二氧化硅粉末直接电解制备硅粉末的方法。日本专利(JP2006/321688)也公开了在二氧化硅粉末中添加硅或用单晶硅片作导体电解高纯石英玻璃直接还原制备硅粉末的方法。这三个专利中所述方法所制备的硅都为微米级颗粒。采用从硅化合物SiX或包含硅化合物SiX的混合物直接制备纳米硅、纳米硅线(管)的电化学方法在国际上还未见报道。

发明内容

本发明的目的是提供一种生产流程短、无污染、操作简单、、原料易得、设备便宜,易于连续生产的从硅的化合物SiX或包含化合物SiX的混合物直接制备硅纳米粉末、纳米线(管)的电化学方法。

根据本发明,从元素Si的化合物SiX的粉末直接制备Si的纳米粉末、纳米线和纳米管中的一种或几种的电化学方法,其特征是:以化合物SiX的粉末为阴极,设置阳极,置于包含金属化合物熔盐的电解质中,在阴极和阳极之间施加电压,进行电解,在阴极制得Si的纳米粉末、Si的纳米线和Si的纳米管中的一种或几种,所述的X是指O,S,C或N。

通过本发明,在阴极可以制得Si的纳米线和Si的纳米管;在阴极也可以制得单一的Si的纳米线;在阴极还可以制得Si的纳米粉末、Si的纳米线和Si的纳米管;阴极又可以制得单一的Si的纳米粉末。

从包含元素Si的化合物SiX的混合物的粉末直接制备含Si的纳米粉末、纳米线和纳米管中的一种或几种的电解产物的电化学方法,其特征是:以包含化合物SiX的混合物为阴极,设置阳极,置于包含金属化合物熔盐的电解质中,在阴极和阳极之间施加电压,进行电解,在阴极制得含有Si的纳米粉末、Si的纳米线和Si的纳米管中的一种或几种的电解产物,所述的X是指O,S,C或N。

通过本发明,在阴极可以制得含有Si的纳米线和Si的纳米管的电解产物;在阴极也可以制得含有Si的纳米线的电解产物;在阴极还可以制得含有Si的纳米粉末、Si的纳米线和Si的纳米管的电解产物;阴极又可以制得含有Si的纳米粉末的电解产物。

本发明的方法中所使用的化合物SiX粉末的平均粒径小于1μm。

所述化合物SiX的混合物是指在化合物SiX的粉末中加入金属、合金、金属化合物M1Y和非金属中的一种或多种,其中金属、合金、金属化合物和非金属为粉末。

所述的金属为Au、Pt、Ag、Cu、Fe、Co、Ni、Cr、Mo、Zr、Ti、Al、Mg、Nb中的一种或几种。

所述的合金为含有金属元素为Au、Pt、Ag、Cu、Fe、Co、Ni、Cr、Mo、Zr、Ti、Al、Mg、Nb的两种或两种以上。

所述的金属化合物M1Y中的M1为Au、Pt、Ag、Cu、Fe、Co、Ni、Cr、Mo、Zr、Ti、Al、Mg或Nb,所述的Y为O,S,C或N。

所述的非金属为C、Si、Ge、S、P、B中的一种或几种。

所述含金属化合物熔盐的电解质中的金属化合物的分子式为MY1,其中M是指Ca、Ba、Li、Al、Cs、Na、K或Sr,Y1为Cl或F。

所述含金属化合物熔盐的电解质中指一种或多种电解质盐。

所述的电解质包含CaO,其主要是由熔盐CaCl2在高温熔融过程中水解产生的。

在阴极和阳极之间施加电压低于3.2V。

在阴极和阳极之间施加电压低于电解质的分解电压。

电解在500-1000℃的温度下进行的。

所述的Si的纳米粉末平均直径小于100nm。

所述的Si的纳米线直径小于100nm。

所述的Si的纳米管直径小于100nm。

所述的电解产物中含有Si的纳米粉末的直径小于100nm,Si的纳米线的直径小于100nm,Si的纳米管的直径小于100nm。

所述的电解产物中含有Si的纳米粉末、纳米线和纳米管的一种或多种。

本发明具备如下特点:

(1)所用原料来源丰富,原材料及制备过程均对环境无污染;

(2)由于是在电解液中制得纳米硅、纳米硅线(管),不存在团聚、缠绕等问题;

(3)制备的纳米硅、纳米硅线(管),具有形貌可控,粒径均一;

(4)工艺过程简单,操作容易,设备简易。

(5)原料和产物均以固态形式加入或移出,易于实现连续化生产。

附图说明

附图1为以二氧化硅为原料在800℃下本发明制备硅纳米线(管)的扫描电子显微镜图像。

附图2为以二氧化硅为原料在800℃下本发明制备的单根硅纳米线的透射电子显微镜图像。

附图3为以二氧化硅为原料在800℃下本发明制备的硅纳米线管的X射线衍射谱。

附图4为以二氧化硅为原料在800℃下本发明制备的硅纳米线的高分辨透射电子显微镜图像。

附图5为以二氧化硅为原料在1000℃下本发明制备的硅纳米线/管的扫描电子显微镜图像。

附图6为以二氧化硅为原料在600℃下本发明制备的硅纳米颗粒的扫描电子显微镜图像。

附图7为以银粉与二氧化硅混合物为原料在800℃下本发明制备的硅纳米线/管/颗粒的扫描电子显微镜图像。

附图8为以钴粉与二氧化硅混合物为原料在800℃下本发明制备的硅纳米线/管的扫描电子显微镜图像。

附图9为以镍粉与二氧化硅混合物为原料在800℃下本发明制备的硅纳米线/管的扫描电子显微镜图像。

附图10为以硅粉与二氧化硅混合物为原料在900℃下本发明制备的硅纳米线/颗粒的扫描电子显微镜图像。

附图11为以铜粉与二氧化硅混合物为原料在800℃下本发明制备的硅纳米线的扫描电子显微镜图像。

具体实施方式

下面将进一步结合附图和实施例对本发明进行描述。这些描述只是为了进一步对本发明进行说明,而不是对本发明进行限制。

本发明提供的技术方案:

从硅化合物SiX或包含硅化合物SiX的混合物直接制备纳米硅、纳米硅线(管)的电化学方法。包括以下步骤:

1.设置以硅化合物SiX或包含硅化合物SiX的混合物为阴极与包含金属化合物MY1熔盐的电解质接触;设置阳极与该电解质接触;在阴极和阳极之间施加电压,控制反应条件。

以硅化合物SiX或包含硅化合物SiX的混合物为阴极的具体实施过程是将硅化合物SiX粉末与粘结剂混合;或者包含硅化合物SiX的混合物的粉末与相对于混合物粉末总重量的40%~60%的蒸馏水和无水乙醇中的一种混合;混合后压制成阴极。

2.根据上述1的方法硅化合物SiX中X是指O,S,C或N中的任何一种。

3.根据上述1的方法含硅化合物SiX的混合物是指在硅化合物SiX加入金属Au、Pt、Ag、Cu、Fe、Co、Ni、Cr、Mo、Zr、Ti、Al、Mg、Nb中的任何一种或多种,或者含有上述元素的任何两种或两种以上的合金。

4.根据上述1的方法含硅化合物SiX的混合物是指在硅化合物SiX加入非金属,包括C、Si、Ge、S、P、B中的任何一种或多种。

5.根据上述1的方法含硅化合物SiX的混合物是指在硅化合物SiX加入金属化合物M1Y,其中的M1为Au、Pt、Ag、Cu、Fe、Co、Ni、Cr、Mo、Zr、Ti、Al、Mg或Nb,所述的Y为O,S,C或N。

所述的含硅化合物SiX的混合物是指在硅化合物SiX中加入金属、合金、金属化合物M1Y和非金属中的一种或多种,其加入量为小于相对于含硅化合物SiX的混合物总量的30wt%。

6.根据上述1的方法金属化合物MY1熔盐的电解质中,其中M是指Ca、Ba、Li、Al、Cs、Na、K或Sr,Y1为Cl或F。

7.根据上述1、5的方法含金属化合物MY1熔盐的电解质中指一种或多种电解质盐。

8.根据上述1的方法的电解质包含CaO。

9.根据上述1的方法在阴极和阳极之间施加电压低于3.2V。

10.根据上述1的方法在阴极和阳极之间施加电压低于电解质的分解电压。

11.根据上述1的方法电解在500-1000℃的温度下进行的。

12.根据上述1的方法电解过程完成后,产物即可随工作电极从熔盐中取出,如有必要可放入新的纳米硅化合物(SiX)或含纳米硅化物(SiX)的混合物固态电极开始新一轮电解,从而实现纳米硅、纳米硅线(管)的连续生产。

13.根据上述1的方法电解产物取出后,在惰性气氛下冷却至室温,然后在稀的无机酸、水和有机溶剂中充分洗涤,在真空中干燥。所述的稀的无机酸可以是1%~3%体积百分比的盐酸。

14.根据上述1的方法电解产物纳米硅、纳米硅线、纳米硅管的平均直径均小于100nm。

15.根据上述1的方法电解产物中含有纳米硅、纳米硅线、纳米硅管的一种或多种。

以纯纳米二氧化硅为原料电解产物典型的纳米硅线(管)扫描电子显微镜和透射电子显微镜如图1、2所示,为直径为50-100nm,长度为2-5μm的纳米线。产物X射线衍射谱如图3所示,为硅晶体。产物高分辨透射电子显微镜图像如图4所示,表明硅纳米线表层有一层无定形二氧化硅。经测量计算知硅的晶面间距为0.31nm,表明此硅面为(111)面。图5和图6为不同温度下以纯的纳米二氧化硅为原料制备的纳米硅线(管)。

下面的实施例用以说明本发明,实施例所述的原料中的“纳米SiO2粉末”是指粒径在100nm以下的粉末。实施例1-3涉及纯的SiO2的电解还原制备纳米硅线(管)。

实施例1

将75wt%的纯度为99.95%的平均粒径为0.2μm的SiO2粉末与25wt%的粘结剂混合(以SiO2粉末和粘结剂的总重量为100%),通过机械压力在5MPa压制为直径大约10mm,厚度1.1mm,在1100℃空气中加热约5小时,将烧结成型的SiO2小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以熔融CaCl2为电解质,在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为3.0V。分别经过2h电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图1所示,为直径50nm左右,长度为2-5微米的弯曲硅纳米线。

实施例2

将75wt%的纯度为99.95%的平均粒径为0.25μm的SiO2粉末与25wt%的粘结剂混合(以SiO2粉末和粘结剂的总重量为100%),通过机械压力在10MPa压制为直径大约10mm,厚度1.2mm,在1200℃空气中加热约4小时,将烧结成型的SiO2小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以熔融CaCl2为电解质,在氩气的环境中,温度为1000℃,用稳压器控制电压进行恒电压电解,槽电压为2.0V。经过4小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图5所示,产物主要为直径50-100nm,长度为2-5微米的弯曲硅纳米线/管,除此之外还含有少量微米级的球形物。

实施例3

将75wt%的纯度为99.95%的纳米SiO2粉末与25wt%的粘结剂混合(以SiO2粉末和粘结剂的总重量为100%),通过机械压力在15MPa压制为直径大约10mm,厚度1.5mm,在100℃空气中加热约1.5小时后升温至1100℃保温3小时,将烧结成型的SiO2小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为600℃,用稳压器控制电压进行恒电压电解,槽电压为2.5V。经过5小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图6所示,产物主要为30-50nm的纳米微球,在高分辨电镜下能看到产物中有极少量的略显弯曲的硅纳米线/管。

图7至图12为含硅化合物SiX的混合物为原料制备的纳米硅线(管),实施例4-10涉及二氧化硅中含有导电性物质电解还原制备硅纳米线(管)。

实施例4

将75wt%的纯度为99.95%的纳米SiO2粉末与25wt%的分析纯300目Ag粉混匀(以SiO2粉末和Ag粉的总重量为100%),加入重量为上述固体粉末的50%的蒸馏水,通过机械压力在15MPa压制为直径大约10mm,厚度1.5mm,在100℃氩气中加热约1.5小时后升温至800℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.5V。经过5小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图7所示,产物直径30nm左右,长度为1微米左右的硅纳米线/管,所得纳米线/管略显弯曲表面光滑。

实施例5

将80wt%的纯度为99.95%的纳米SiO2粉末与20wt%的分析纯粒径200nm的Co粉混匀(以SiO2粉末和Co粉的总重量为100%),加入重量为上述固体粉末的50%的蒸馏水,通过机械压力在4MPa压制为直径大约10mm,厚度1.5mm,在150℃氩气中加热约1.5小时后升温至1000℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的熔融混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.2V。经过4小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图8所示,产物为直径100nm左右,长度为1微米的硅纳米线/管,且线/管表面极其粗糙附着有许多10nm左右的小颗粒。

实施例6

将80wt%的纯度为99.95%的纳米SiO2粉末与20wt%的直径为2~3微米的Ni纤维混匀(以SiO2粉末和Ni纤维的总重量为100%),加入重量为上述固体总重的50%的无水乙醇,通过机械压力在15MPa压制为直径大约10mm,厚度1.5mm,在100℃氩气中加热约1.5小时后升温至1000℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的熔融混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.0V。经过5小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图9所示,为直径100nm左右,长度为6微米的硅纳米线/管,且线/管表面极其粗糙附着有许多10nm左右的小颗粒。

实施例7

将80wt%的纯度为99.95%的纳米SiO2粉末与20wt%的粒径300nm的Si粉混匀(以SiO2粉末和Si粉的总重量为100%),加入重量为上述固体粉末的50%的无水乙醇,通过机械压力在4MPa压制为直径大约10mm,厚度1.5mm,在100℃氩气中加热约1.5小时后升温至1000℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的熔融混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为900℃,用稳压器控制电压进行恒电压电解,槽电压为2.0V。经过5小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图10所示,产物主要为50-80nm的球形颗粒。

实施例8

将80%的纯度为99.95%的纳米SiO2粉末与20%的分析纯300目Cu粉混匀(以SiO2粉末和Cu粉的总重量为100%),加入重量为上述固体粉末的50%的蒸馏水,通过机械压力在6MPa压制为直径大约10mm,厚度1.5mm,在150℃氩气中加热约1.5小时后升温至900℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.5V。经过5小时电解后将电解产物依次用体积百分比1%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物如图11所示,为直径50-100nm左右,长度为5微米的笔直的硅纳米线。

实施例9

将80wt%的纯度为99.95%的纳米SiO2粉末与20wt%的分析纯粒径5微米左右的石墨混匀(以SiO2粉末和石墨的总重量为100%),加入重量为上述固体粉末的50%的蒸馏水,通过机械压力在6MPa压制为直径大约10mm,厚度1.5mm,在150℃氩气中加热约1.5小时后升温至900℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.5V。经过5小时电解后将电解产物依次用1V%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物为直径150nm左右,长度为4微米的硅纳米线。

实施例10

将80%的纯度为99.95%的纳米SiO2粉末与20%的分析纯粒径100nm左右的CuO混匀(以SiO2粉末和CuO的总重量为100%),加入重量为上述固体粉末的50%的蒸馏水,通过机械压力在6MPa压制为直径大约10mm,厚度1.5mm,在150℃氩气中加热约1.5小时后升温至900℃保温3小时,将烧结成型的含SiO2混合物小片与导电的阴极集流体复合作为阴极,以石墨棒作为阳极,以CaCl2+NaCl的混盐为电解质(其中CaCl2占混盐总重量的51%,NaCl占49%),在氩气的环境中,温度为800℃,用稳压器控制电压进行恒电压电解,槽电压为2.5V。经过5小时电解后将电解产物依次用1V%稀盐酸、水、无水乙醇冲洗,真空干燥,得到产物为直径70nm左右,长度为6微米的硅纳米线。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号