首页> 外文学位 >Nano-silicide formation through point contact reaction, nickel-silicon/silicon/nickel-silicon and platinum-silicon/silicon/platinum-silicon nanowire heterostructures for nanodevices.
【24h】

Nano-silicide formation through point contact reaction, nickel-silicon/silicon/nickel-silicon and platinum-silicon/silicon/platinum-silicon nanowire heterostructures for nanodevices.

机译:通过点接触反应,纳米硅器件的镍硅/硅/硅镍和铂硅/硅/铂硅纳米线异质结构形成纳米硅化物。

获取原文
获取原文并翻译 | 示例

摘要

Nanowire heterostructures of NiSi/Si/NiSi and PtSi/Si/PtSi are investivagted as building blocks for field-effect transistors where the source-drain contacts are defined by metallic silicide nanowire regions. Nano-heterostructures of NiSi/Si/NiSi, in which the length of the Si region can be controlled down to 2 nm, have been produced using in-situ point contact reaction between Si and Ni nanowires in an ultra-high vacuum transmission electron microscope. The Si region was found to be highly strained, more than 12%. The strain increases with the decreasing Si layer thickness and can be controlled by varying heating temperature. It was observed that the Si nanowire is transformed into a bamboo-type grain of single crystal NiSi from both ends following the path with low activation energy. We propose the reaction is assisted by interstitial diffusion of Ni atoms within the Si nanowire and is limited by the rate of dissolution of Ni into Si at the point contact interface. The rate of incorporation of Ni atoms to support the growth of NiSi has been measured to be 7 x 10 -4 sec per Ni atom. The nanoscale epitaxial growth rate of single-crystal NiSi has been measured using high resolution lattice imaging videos. Based on the rate, we can control the consumption of Si and, in turn, the dimensions of the nano-heterostructure down to less than 2 nm, thereby far exceeding the limit of conventional patterning process. The controlled huge strain in the controlled atomic scale Si region, potential gate of Si-nanowire-based transistors, is expected to significantly impact the performance of electronic devices.;Also, we report a method of fabrication of high quality multiple heterostructures of NiSi/Si in a nanowire of Si and investigation of NiSi formation in nano-scale. By using the point contact reaction between several Ni nanodots and a Si nanowire carried out in-situ in an ultrahigh vacuum transmission electron microscopy, multiple sections of single-crystal NiSi and Si with very sharp interfaces were produced in a Si nanowire. Owing to the supply-limited point contact reaction, we propose that the nucleation and growth of the bamboo-type NiSi grains start at the middle of the point contacts between two Ni nanodots and a Si nanowire. The reaction happens by the dissolution of Ni into the Si nanowire at the point contacts and by interstitial diffusion of Ni atoms within a Si nanowire. The growth of NiSi stops as the amount of Ni in the Ni nanodots is consumed. The fabricated multi-nano-heterostructures may enhance the development of circuit elements in nano-scale electronic devices.;Additionally, the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures are demonstrated. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heteorstructure has an atomically sharp interface with epitaxial relationships of Si [1-10]//PtSi [010] and Si (111)//PtSi (101). Electrical measurements show that the pure PtSi nanowires have low resistivities ∼28.6 muO·cm and high breakdown current densities >1 x 108 A/cm 2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/mum, field-effect hole mibility of 168 cm2/V·s, and on/off ratio >10 7, demonstrating the best performing device from intrinsic silicon nanowires.
机译:研究了NiSi / Si / NiSi和PtSi / Si / PtSi的纳米线异质结构,作为场效应晶体管的构建模块,其中源极-漏极接触由金属硅化物纳米线区域定义。利用超高真空透射电子显微镜中的Si和Ni纳米线之间的原位点接触反应,已经制得了NiSi / Si / NiSi纳米异质结构,其中Si区域的长度可以控制到2 nm。 。发现Si区域高度应变,超过12%。应变随着硅层厚度的减小而增加,并且可以通过改变加热温度来控制。观察到,Si纳米线沿着两端以低活化能的路径从两端转变为竹状单晶NiSi晶粒。我们提出该反应是通过镍原子在硅纳米线内的间隙扩散来辅助的,并且受到镍在点接触界面处溶解到硅中的速率的限制。据测量,支持NiSi生长的Ni原子的掺入速率为每个Ni原子7×10 -4秒。已使用高分辨率晶格成像视频测量了单晶NiSi的纳米级外延生长速率。基于该速率,我们可以控制Si的消耗,进而可以将纳米异质结构的尺寸控制在2 nm以下,从而远远超出了常规构图工艺的极限。预计在可控的原子尺度Si区域中可控的巨大应变(基于Si-纳米线的晶体管的潜在栅极)将极大地影响电子设备的性能。此外,我们还报道了一种高质量的NiSi / N异质结构的制造方法。 Si纳米线中的Si和纳米尺度NiSi形成的研究。通过使用在超高真空透射电子显微镜中原位进行的几个Ni纳米点和Si纳米线之间的点接触反应,在Si纳米线中产生了具有非常清晰的界面的单晶NiSi和Si的多个部分。由于供应受限的点接触反应,我们提出竹型NiSi晶粒的成核和生长始于两个Ni纳米点和一条Si纳米线之间的点接触的中间。该反应是通过将Ni在点接触处溶解到Si纳米线中以及Ni原子在Si纳米线内的间隙扩散而发生的。随着Ni纳米点中Ni的消耗,NiSi的生长停止。制备的多纳米异质结构可以促进纳米级电子器件中电路元件的发展。此外,还证明了PtSi纳米线,PtSi / Si / PtSi纳米线异质结构的形成以及由这种异质结构形成的纳米器件。扫描电子显微镜研究表明,硅纳米线可以通过光刻定义的铂垫和硅纳米线之间的受控反应转化为PtSi纳米线。高分辨率透射电子显微镜研究表明,PtSi / Si / PtSi异质结构具有原子锐利的界面,具有Si [1-10] // PtSi [010]和Si(111)// PtSi(101)的外延关系。电学测量表明,纯PtSi纳米线具有低电阻率〜28.6 muO·cm和高击穿电流密度> 1 x 108 A / cm2。此外,我们使用具有原子尖锐界面的单晶PtSi / Si / PtSi纳米线异质结构,我们制造了来自本征硅纳米线的高性能纳米级场效应晶体管,其中源极和漏极触点由金属PtSi纳米线区域定义,而栅极长度由Si纳米线区域定义。电学测量显示出近乎完美的p沟道增强模式晶体管性能,归一化跨导为0.3 mS / mum,场效应空穴迁移率为168 cm2 / V·s,开/关比> 10 7,证明了性能最佳的器件本征硅纳米线。

著录项

  • 作者

    Lu, Kuo-Chang.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号