首页> 中国专利> 采用预填埋相变材料降低水泥基材料内部温升的方法

采用预填埋相变材料降低水泥基材料内部温升的方法

摘要

本发明属于材料应用领域,提供了一种采用预填埋相变材料降低水泥基材料内部温升的方法,将相变温度为28~40℃、储能密度为170~290J/g的相变材料在高于相变点的温度下注入管道中,封装后降温到相变点温度下,使相变材料变为固态,在浇筑过程中将含有固态相变材料的管道填埋到水泥基材料中,在水泥水化过程中,材料内部温度升高至相变点时,相变材料发生相变,吸收大量的热,其中相变材料用量按(A)式计算:根据要求来设计PCM的填埋量,可有效控制混凝土内部温度峰值和温升速率,避免了因温升过高引起的混凝土开裂。PCM经过预先封装,避免直接掺加对水泥基材料性能的影响,材料来源广泛,价格低廉的降低水泥基材料内部温升的方法。

著录项

  • 公开/公告号CN101187265A

    专利类型发明专利

  • 公开/公告日2008-05-28

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN200710190972.1

  • 发明设计人 钱春香;高桂波;王瑞兴;

    申请日2007-11-30

  • 分类号E04G21/02(20060101);E02D15/00(20060101);C09K5/02(20060101);

  • 代理机构32200 南京经纬专利商标代理有限公司;

  • 代理人陆志斌

  • 地址 210096 江苏省南京市四牌楼2号

  • 入库时间 2023-12-17 20:11:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-01-23

    未缴年费专利权终止 IPC(主分类):C09K5/06 授权公告日:20090805 终止日期:20111130 申请日:20071130

    专利权的终止

  • 2009-08-05

    授权

    授权

  • 2008-07-23

    实质审查的生效

    实质审查的生效

  • 2008-05-28

    公开

    公开

说明书

技术领域

本发明属于材料应用技术领域,特别涉及一种降低水泥基材料内部温升,延缓温度峰值出现时间,避免出现温度裂缝的方法。

背景技术

混凝土等水泥基材料浇筑后,水泥的水化热使材料内部温度上升。由于表面和内部的散热条件不同,形成较大的内外温差,使材料面层产生拉应力。在水泥水化初期,水泥基材料的弹性模量较小,抗拉强度较低,温差产生的拉应力容易超过材料的抗拉强度,使材料表面产生裂缝,严重的将出现贯穿性裂缝。裂缝不仅会降低结构的刚度和整体性,而且将加剧钢筋锈蚀和碳化,导致抗冻融、抗疲劳、防渗、防水等性能的降低,严重影响结构的耐久性。所以必须对大体积水泥基材料的内部温升加以控制。

现有的控制水泥基材料内部温升的技术主要有:

1.建立冷却水循环系统

在水泥基材料浇筑过程中布置管道,在水化过程中向管道中提供循环水,将部分水泥的水化热导出,从而调节和控制混凝土内部温度。这种方法是目前最常用的方法,但也存在很多缺点,突出表现在:通水过程中,水温与材料内部存在温差,当温差过大、冷却速度过快时,易产生裂缝,俗称“冷击”;循环水与水泥基材料的温差、通水量在不同时期要有所差别,温度变化不平缓;温控效果受外界温度变化的影响。

2.加入缓凝剂微胶囊

在水泥基材料中掺加以石蜡为壁材、缓凝剂为芯材的微胶囊,在温升过程中石蜡融化使缓凝剂释放,减缓水泥的水化速率,从而降低内部温升速度和温度峰值。但这种方法会使混凝土的早期强度大大降低,影响施工进度;石蜡融化后对水泥基材料长期性能影响的研究还未深入。

3.直接在混凝土中加入相变材料(Phase Change Materials,简称PCM)

相变材料是指在相变过程中能够吸收或放出大量热量,并在此过程中保持温度相对稳定的材料。相变材料是近年来发展迅速的新材料,广泛应用于太阳能储存、工业废热回收、电子器件热管理、供暖和空调系统以及建筑外围护结构等领域。由于PCM潜热高,相变过程中温度变化小,所以可以利用这一特点来控制周围环境温度的变化。直接在混凝土搅拌过程中加入固态相变材料,对水化反应产生的热量有一定的吸收,从而对混凝土内部温度有一定的控制作用,减少混凝土温度裂缝产生的几率。此方法的缺点是:直接加入相变材料的重量有限,降温效果有限;相变材料对水泥基材料的耐久性有潜在危害;而且相变材料在碱性环境下物理化学性质的稳定性还需进一步研究。

发明内容

本发明针对上述缺点提供了一种可有效避免温度裂缝的出现,避免直接掺加对水泥基材料性能的影响,温控幅度可控,材料来源广泛,价格低廉的降低水泥基材料内部温升的方法。

本发明的技术方案为:一种采用预填埋相变材料降低水泥基材料内部温升的方法,是将相变温度为28~40℃、储能密度为170~290J/g的相变材料在高于相变点的温度下注入管道中,封装后降温到相变点温度下,使相变材料变为固态,在浇筑过程中将含有固态相变材料的管道填埋到水泥基材料中,在水泥水化过程中,材料内部温度升高至相变点时,相变材料发生相变,吸收大量的热,其中相变材料用量按下式计算:

Mp=CρQ(Mc+KMF)α[C1(T-t0)+q-C1T]+C1(1-α)(Mc+KMF)Q.

下面具体阐述下相变材料用量的计算:

绝热条件下,水泥基材料的最大绝热温升可表示为:

Tmax=(MC+KMF)Q---(1)

PCM填埋到水泥基材料中后,在升温过程中吸收的热量为:

Q′=C1MX(T-t0)+MPq+C1′MP(Tmax′-T)                     (2)

PCM吸收的这部分热量相当于减少了引起水泥基材料内部温升的热量。预填埋PCM的混凝土最大绝热温升理论计算公式可表示为:

Tmax=(MC+KMF)Q-[C1Mp(T-t0)+Mpq+C1Mp(Tmax-T)]

所以填埋PCM后的最大绝热温升为:

Tmax=(Mc+KMF)Q-Mp[C1(T-t0)+C1Mp---(3)

加入PCM后,在相同的水泥基材料内部,理论绝热温升的降低幅度(以百分比计)为

α=(1-TmaxTmax)×100%---(4)

将式(1)与式(3)带入(4)式得:

α={1-CρQ(Mc+KMF)-CρMp[C1(T-t0)+q-C1T](C+C1Mp)(Mc+KMF)Q}×100%---(5)

PCM的预填埋量为

Mp=CρQ(Mc+KMF)α[C1(T-t0)+q-C1T]+C1(1-α)(Mc+KMF)Q---(6)

上述公式中

Mc:单位体积混凝土中水泥的质量;MF:单位体积混凝土中掺合料的质量;

K:指折减系数,对于粉煤灰,K=0.25,对于矿渣微粉,K=0.3;

Q:单位水泥的水化热;

Q’:PCM填埋到混凝土中后,升温过程中吸收的热量

C:混凝土的比热;                ρ:混凝土的密度;

C1:固态PCM的比热                C1′:液态PCM的比热

Mp:PCM的重量                    q:PCM的储能密度

T:PCM的相变温度                 t0:混凝土的初始温度

Tmax′:预填埋PCM后混凝土的最大绝热温升;

Tmax:水泥基材料的最大绝热温升;

α:绝热温升降低幅度

本发明相比现有技术的有益效果为:

1.利用预填埋PCM控制水泥基材料内部温升,温控幅度可根据要求来设计PCM的填埋量,可有效控制混凝土内部温度峰值和温升速率,避免了因温升过高引起的混凝土开裂。

2.水泥基材料与PCM的温度变化同步,可有效避免局部温差过大造成的“冷击”。

3.由于选用的PCM的液态密度小于固态密度,所以经降温处理发生相变为固态时,体积不会增大,可有效避免因体积膨胀产生的压应力。

4.PCM经过预先封装,避免了直接掺加对水泥基材料性能造成影响。

5.PCM种类繁多,材料来源广泛,价格低廉,选择范围大。

6.PCM在吸收热量后变为液态,可通过管道导出循环利用,经济又环保。

附图说明

图1是采用预填埋相变材料降低水泥基材料内部温升的控制流程图。

图2是采用PCM控制水泥基材料内部温升的管道布置示意图。

其中:1保温层;2塑料膜;3水泥基材料;4管子;5PCM;A置于PCM中的热电偶;B置于水泥基材料中心的热电偶;C置于水泥基材料侧壁的热电偶。

图3是PCM填埋量对不同水泥用量的混凝土最大绝热温升的影响。

图4是PCM预填埋量与最大绝热温升降低幅度的关系。

图5是预填埋PCM对水泥净浆半绝热温升的影响。

图6是预填埋PCM对水泥砂浆半绝热温升的影响。

具体实施方式

下面结合附图对本发明做出具体说明。

图1为本发明的技术方案的流程图,参看图1可以看出本发明是在高于相变点的温度时,将液态PCM注入管道或容器中进行封装处理,然后降温至相变点温度以下,使PCM在管道或容器中由液态转变为固态,并在相变点以下的温度贮存备用。使用时再通过一定方式将管道或容器填埋到大体积混凝土中,当混凝土的水化热使得内部温度达到相变温度时,PCM将吸收部分水化热由固态变为液态,使混凝土内部温度峰值和温升速率得到有效降低,避免了因温升过高引起的混凝土开裂;水泥基材料与PCM的温度变化同步,可有效避免局部温差过大造成的“冷击”;PCM在吸收热量后变为液态,可以由阀门开关控制通过管道导出循环利用,经济又环保。

图2是采用本发明所述方法的其中一种管道布置示意图,这种管道布置是将装有一定重量PCM 5的钢管4或聚乙烯塑料管4在水泥基材料中按蛇行均匀布置,特殊部位可根据结构情况适当调整。分别在水泥基材料的中心、边缘部位和PCM材料内部布置热电偶B、C、A进行测温。在管道的两端设有阀门,可以将液态的PCM导出进行循环利用。水泥基材料体可以设有保温层1,保温层1内可以用塑料膜2进行阻隔。

假设水泥最终水化放出的水化热为400J/g,水泥基材料密度2400kg/m3,比热为0.96J/g℃。PCM预填埋量为水泥重量的0~40%时,水泥基材料的最大绝热温升随着PCM预填埋量的增加而降低,如图3所示。PCM的预填埋量水泥基材料最大绝热温升的降低幅度关系如图4所示,PCM预填埋量越大,绝热温升降低的幅度越大。水泥基材料的水泥用量为400kg/m3时,PCM预填埋量为水泥重量的10%~20%时,最大绝热温升下降6.17℃~11.66℃,下降幅度为8.89%~16.79%。所以由图3和图4可以看出要提高PCM对水泥基材料绝热温升的降低幅度,可加大PCM的预填埋量,选择合适的预填埋方法,同时可选择在水泥用量较高的水泥基材料中使用。

一种采用预填埋相变材料降低水泥基材料内部温升的方法,是将相变温度为28~40℃、储能密度为170~290J/g的相变材料在高于相变点的温度下注入管道中,封装后降温到相变点温度下,使相变材料变为固态,在浇筑过程中将含有固态相变材料的管道填埋到水泥基材料中,在水泥水化过程中,材料内部温度升高至相变点时,相变材料发生相变,吸收大量的热,其中相变材料用量按下式计算:

Mp=CρQ(Mc+KMF)α[C1(T-t0)+q-C1T]+C1(1-α)(Mc+KMF)Q.

其中相变材料的相变温度在28~40℃间任选,可以为28℃、30℃、31℃、37℃、40℃包括所述范围内最大和最小值之间的各个数和全部数和/或部分。储能密度为170~290J/g之间的任一数值,包括所述范围内最大和最小值之间的各个数和全部数和/或部分数,如取170J/g、173J/g、180J/g、200J/g、240J/g直到290J/g。

实施例1

采用Na2SO4·10H2O作为预填埋相变材料,其物理性质如表1所示。

                    表1  PCM的物理性能

  分子式  储能  密度  J/g  熔点  ℃  固态比  热  J/g℃  液态比  热  J/g℃  Na2SO4·10H2O  241  32.4  1.76  3.30

水泥净浆采用牌号为PO42.5的水泥拌制,水灰质量比为0.3∶1。在半绝热温升条件下,分别在净浆中预填埋为水泥重量的0、3%、6%重量的PCM,净浆内部温升曲线如图5所示。由此图可知:填埋PCM为水泥重量的3%~6%时,相比不填埋PCM水泥净浆的温度峰值降低13℃~20℃,温度峰值出现的时间延长1.5h~2.5h;水泥净浆的半绝热温升曲线随着PCM填埋量的增加而趋于平缓;在温度为32℃左右,温度曲线发生分化。

由于保温箱在水泥水化过程中会有部分热量散失,所以测得的温度为水泥基材料半绝热状态下的温度,温升降低幅度比理论计算值要低。

实施例2

采用Na2SO4·10H2O作为预填埋相变材料,其物理性质如表1所示。水泥砂浆采用PO42.5水泥和硅质河砂拌制,水灰质量比为0.4∶1,灰砂质量比为1∶3。在半绝热温升条件下,分别在水泥砂浆中预填埋占水泥砂浆重量的0、3%、6%质量的PCM,砂浆内部温升曲线如图6所示。由此图可知:填埋PCM为水泥重量的3%~6%时,相比不填埋PCM砂浆的温度峰值降低4℃~6℃,温度峰值出现的时间延长2h~5h;砂浆的半绝热温升曲线随着PCM填埋量的增加而趋于平缓;在温度为32℃左右,温度曲线发生分化。

由于保温箱在水泥水化过程中会有部分热量散失,所以测得的温度为水泥基材料半绝热状态下的温度,温升降低幅度比理论计算值要低。

实施例3

采用Na2HPO4·12H2O作为预填埋相变材料,其物理性质如表2所示。

                   表2  PCM的物理性能

  分子式  储能  密度  J/g  熔点  ℃  固态比  热  J/g℃  液态比  热  J/g℃  Na2HPO4·12H2O  279  40  1.56  1.95

水泥净浆采用牌号为PO42.5的水泥拌制,水灰质量比为0.3∶1。在半绝热温升条件下,分别在净浆中预填埋为水泥重量的0、3%、6%重量的PCM,净浆内部温升在填埋PCM为水泥重量的3%~6%时,相比不填埋PCM水泥净浆的温度峰值降低的要大,温度峰值出现的时间也得到延长。

实施例4

采用CaCl2·6H2O作为预填埋相变材料,其物理性质如表3所示。

                    表3  PCM的物理性能

  分子式  储能  密度  J/g  熔点  ℃  固态比  热  J/g℃  液态比  热  J/g℃  CaCl2·6H2O  170.0  29.0  1.46  2.13

水泥净浆采用牌号为PO42.5的水泥拌制,水灰质量比为0.3∶1。在半绝热温升条件下,分别在净浆中预填埋为水泥重量的0、3%、6%重量的PCM,净浆内部温升在填埋PCM为水泥重量的3%~6%时,相比不填埋PCM水泥净浆的温度峰值降低的要大,温度峰值出现的时间也得到延长。

实施例5

采用Na2CO4·10H2O作为预填埋相变材料,其物理性质如表4所示。

                 表4  PCM的物理性能

  分子式  储能  密度  J/g  熔点  ℃  固态比  热  J/g℃  液态比  热  J/g℃  Na2CO4·10H2O  267  32  1.99  3.34

水泥净浆采用牌号为PO42.5的水泥拌制,水灰质量比为0.3∶1。在半绝热温升条件下,分别在净浆中预填埋为水泥重量的0、3%、6%重量的PCM,净浆内部温升在填埋PCM为水泥重量的3%~6%时,相比不填埋PCM水泥净浆的温度峰值降低的要大,温度峰值出现的时间也得到延长。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号