首页> 中国专利> 拉姆波式高频设备、拉姆波式高频设备的制造方法

拉姆波式高频设备、拉姆波式高频设备的制造方法

摘要

本发明提供一种拉姆波式高频设备、拉姆波式高频设备的制造方法,该设备可提高结构强度、实现稳定的特性,该方法在制造步骤中不易破裂、可以提高成品率。拉姆波式高频设备(10)由在一个主面上形成有IDT电极(30)的压电基板(20)和接合在压电基板(20)的另一个主面上的加强基板(50)构成,在压电基板(20)和加强基板(50)的接合面上设有面积大于拉姆波的传输区域的空间(54)。并且,该拉姆波式高频设备(10)的制造方法包括:在加强基板(50)上形成相当于空间(54)的凹部(53)的步骤;在凹部(53)内形成牺牲层的步骤;在接合压电基板(20)的厚板和加强基板(50)之后,将压电基板(20)的厚板研磨为规定厚度的步骤;形成IDT电极(30)和反射器(41、42)的步骤;以及去除牺牲层以形成空间(54)的步骤。

著录项

  • 公开/公告号CN101034880A

    专利类型发明专利

  • 公开/公告日2007-09-12

    原文格式PDF

  • 申请/专利权人 精工爱普生株式会社;

    申请/专利号CN200710079179.4

  • 发明设计人 田中悟;

    申请日2007-02-15

  • 分类号H03H9/25(20060101);H03H9/10(20060101);H01L41/083(20060101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人黄纶伟

  • 地址 日本东京

  • 入库时间 2023-12-17 19:07:33

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-04-01

    未缴年费专利权终止 IPC(主分类):H03H9/25 授权公告日:20091014 终止日期:20140215 申请日:20070215

    专利权的终止

  • 2009-10-14

    授权

    授权

  • 2007-11-07

    实质审查的生效

    实质审查的生效

  • 2007-09-12

    公开

    公开

说明书

技术领域

本发明涉及拉姆波式高频设备、以及拉姆波式高频设备的制造方法。具体地讲,涉及在具有IDT电极的压电基板上接合加强基板而形成的拉姆波式高频设备及其制造方法。

背景技术

以往,作为高频谐振器的代表例,有使用瑞利波(Rayleigh wave)、漏波(Leaky wave)和SH波的声表面波元件,以及使用体积波、即拉姆波(Lamb wave)的拉姆波元件。

例如,已经知道的瑞利波式声表面波元件,在被称为ST切石英的石英基板的表面,在Z’轴方向形成有IDT电极(例如,参照非专利文献1)。

另外,已经知道的SH波式声表面波元件,传输使声表面波的传输方向相对于STW切石英、即ST切石英偏移90度的横波(例如,参照专利文献1)。

另外,也已经知道不采用声表面波、而采用在压电基板的上下表面重复反射来传输的体积波方式的拉姆波元件,该拉姆波元件的相位速度比声表面波快,所以被公认为特别适合高频(例如,参照非专利文献2和专利文献2)。

并且,已经知道作为使用了上述拉姆波元件的拉姆波式高频谐振器,例如压电基板使用AT切石英基板,通过把石英基板的厚度H和拉姆波的波长λ的关系设定在0<2H/λ≤10的范围内,可以有效激励拉姆波。

[专利文献1]日本特开平10-233645号公报(第3~第6页,图1)

[专利文献2]日本特开2003-258596号公报

[非专利文献1]信学技报TECHNIALCALREPORT OF IEICE.US99-20(199-06)37页-42页,「有限要素法を用いた弾性表面波の周波数—温度特性解析」,神名重男

[非专利文献2]第33次EM研讨会2004,第93页~第96页,「ラム波型弾性表面素子用基板」,中川恭彦、百濑雅之、垣尾省司

在这些专利文献1、2和非专利文献1、2中,压电基板的厚度为几μm~几十μm,容易破裂,所以操作困难。特别是拉姆波式高频设备虽然比起声表面波,能够实现高频,但如专利文献2公开的那样,为了激励拉姆波,必须将压电基板的厚度设为几个波长。因此,与声表面波设备相比,存在容易破裂、操作困难、成品率降低的问题。

发明内容

本发明的目的在于,把解决前述问题作为其宗旨,提供一种提高结构强度、实现稳定的谐振特性的拉姆波式高频设备,以及在制造步骤中不易破裂、可以提高成品率的制造方法。

本发明的拉姆波式高频设备的特征在于,由在一个主面上形成有IDT电极的压电基板、和接合在所述压电基板的另一个主面上的加强基板构成,在所述压电基板或所述加强基板上设有面积大于拉姆波的传输区域的空间,在所述空间的周缘设有接合面。

根据本发明,由于具有加强基板,并将薄且易破裂的压电基板和加强基板接合起来,所以能够提供可以提高机械强度、不易破裂、且容易操作的拉姆波式高频设备。

并且,在压电基板或加强基板上设置面积大于拉姆波的传输区域的空间,所以确保机械强度并且排除接合面的拉姆波激励的能量损失,能够实现激励效率高、且具有稳定的谐振特性的拉姆波式高频设备。

并且,优选所述空间利用设于所述加强基板或所述压电基板的箱状凹部形成。

这样,在压电基板和加强基板的接合面上能够容易形成上述空间。该空间利用箱状凹部形成。因此,包围凹部(即空间)的整个缘部被接合,所以即使激励条件所要求的压电基板的厚度为几μm,也能够保持作为拉姆波式高频设备的结构强度。

并且,由于凹部为箱状,所以能够将空间气密密封、即真空密封。因此,可以排除源自反射拉姆波的压电基板背面侧(另一个主面侧)界面的能量损失。

并且,优选所述空间利用设于所述加强基板或所述压电基板的任一方上的槽状凹部形成。

槽状凹部的剖视形状形成为压电基板或加强基板的对置的一对侧面开口的大致“”字状,凹部的周缘在两个方向上被加强。具体情况将在后面的实施方式中说明,但在凹部中形成牺牲层,且在形成IDT电极后,容易从侧面开口部去除牺牲层。

并且,在本发明中,优选所述压电基板利用石英基板形成。

通过使用石英基板作为压电基板,可以实现优于使用现有技术的STW切石英基板、ST切石英基板的声表面波元件的温度特性。

并且,本发明的拉姆波式高频设备的特征在于,由在一个主面上形成有IDT电极的压电基板、和接合在所述压电基板的另一个主面上的加强基板构成,在所述压电基板或所述加强基板上设有面积大于拉姆波的传输区域的空间,在所述空间的周缘设有接合面,该拉姆波式高频设备被气密地收纳在由壳体和盖体构成的封装中。

根据本发明,利用加强基板加强的拉姆波式高频设备被进一步收纳在封装内,所以能够保护拉姆波式高频设备不受外部环境的影响。

并且,已经公知在IDT电极产生伤痕等时,激励特性明显劣化,但由于被收纳在封装内,所以在封装后没有接触IDT电极的机会,可以保护IDT电极。

另外,由于封装被气密密封,所以能够将封装内部保持为真空状态,从而也能够在IDT电极侧抑制能量损失。并且,即使在前述空间为利用侧面具有开口部的槽状凹部形成的结构中,通过真空密封封装内部,也可以使空间内部也成为真空,能够一次完成真空步骤。

并且,在本发明中,优选通过至少设于构成所述IDT电极的母线上的多个焊盘,接合在设于所述壳体内面的连接电极上。

即使在母线上设置焊盘也不会影响激励。因此,通过在母线上设置焊盘并接合在连接电极上,可以实现与连接电极的电气连接,并将拉姆波式高频设备固定在封装上。

使用焊盘的接合被称为倒装片安装。通过采用倒装片安装,从而与以往在声表面波元件的安装中使用的引线接合安装相比,可以兼作到固定和连接,能够缩小安装所需要的厚度和面积等空间,可以实现扁平化、小型化。

并且,本发明的拉姆波式高频设备的制造方法,该拉姆波式高频设备由在一个主面上形成有IDT电极的压电基板、和接合在所述压电基板的另一个主面上的加强基板构成,在所述压电基板或所述加强基板上设有面积大于拉姆波的传输区域的空间,在所述空间的周缘设有接合面,其特征在于,该制造方法包括如下的步骤:利用设于所述压电基板的厚板或所述加强基板的任一方上的槽形成相当于所述空间的凹部的步骤;在所述凹部中形成牺牲层的步骤;接合所述压电基板的厚板和所述加强基板的接合步骤;在接合步骤之后,将所述压电基板的厚板研磨为规定厚度的研磨步骤;在研磨步骤之后,形成IDT电极的步骤;和去除所述牺牲层的步骤。

根据本发明,在凹部中形成牺牲层后,在压电基板为厚板的状态下与加强基板接合,将压电基板研磨为规定的厚度,再形成IDT电极,然后去除牺牲层,形成上述空间。因此,在即将完成拉姆波式高频设备之前设有牺牲层,所以能够在制造步骤中途减轻压电基板破裂,可以提高成品率。

并且,由于凹部形成为槽状,所以具有能够容易从槽两端部的开口部去除牺牲层的效果。

并且,本发明提供一种拉姆波式高频设备的制造方法,该拉姆波式高频设备由在一个主面上形成有IDT电极的压电基板、和接合在所述压电基板的另一个主面上的加强基板构成,在所述压电基板或所述加强基板上设有面积大于拉姆波的传输区域的空间,在所述空间的周缘设有接合面,其特征在于,该制造方法包括如下的步骤:在所述加强基板上形成相当于所述空间的箱状凹部的步骤;在所述凹部的底面设置贯通孔的步骤;在所述凹部中形成牺牲层的步骤;接合所述压电基板的厚板和所述加强基板的接合步骤;在接合步骤之后,将所述压电基板的厚板研磨为规定厚度的研磨步骤;在研磨步骤之后,形成IDT电极的步骤;和去除所述牺牲层的步骤。

这样,凹部为箱状,即使牺牲层形成于该箱内部,通过设置与凹部连通的贯通孔,也可以使用该贯通孔去除牺牲层。

优选所述压电基板利用石英基板构成,并利用其蚀刻液与所述压电基板的蚀刻液不同的材料形成所述牺牲层。

此处,所述蚀刻液不同的材料是指例如在去除牺牲层时使用蚀刻法,牺牲层因蚀刻液而溶解但压电基板不溶解的材料,有氧化锌(ZnO)和氮化铝(AlN)等。

这样,在去除牺牲层时,压电基板与牺牲层的界面不使用蚀刻液加工,能够在压电基板的正反两面反射的拉姆波中获得良好的谐振特性。

并且,优选利用石英基板构成所述压电基板,并包括以下步骤:利用SiO2形成所述牺牲层,在所述压电基板的另一个主面上形成蚀刻保护层的步骤;在去除所述牺牲层的步骤之后,在面积大于拉姆波的传输区域的范围内去除所述蚀刻保护层的步骤。

作为由压电基板和加强基板构成的振动体的结构体,一般被称为MEMS(Micro Electro Mechanical Systems)结构体。在MEMS结构体中一般利用SiO2形成牺牲层。但是,由于石英基板和牺牲层的SiO2的蚀刻液相同,所以在牺牲层去除步骤中,石英基板中与牺牲层接触的另一个主面(即背面)也被蚀刻。拉姆波式高频设备是体积波,所以背面也将影响振动特性。因此,通过在石英基板的背面设置蚀刻保护层,可以保护石英基板不受蚀刻液影响。

另外,本发明提供一种拉姆波式高频设备的制造方法,该拉姆波式高频设备由在一个主面上形成有IDT电极的压电基板、和接合在所述压电基板的另一个主面上的加强基板构成,在所述压电基板或所述加强基板上设有面积大于拉姆波的传输区域的空间,在所述空间的周缘设有接合面,其特征在于,该制造方法包括:在所述压电基板的厚板或所述加强基板的任一方上形成相当于所述空间的凹部的步骤;接合所述压电基板的厚板和所述加强基板的接合步骤;在所述接合步骤之后,向所述空间填充由热固性树脂构成的牺牲层并使其固化的步骤;在使所述牺牲层固化后,将所述压电基板的厚板研磨为规定厚度的研磨步骤;在研磨步骤之后,形成IDT电极的步骤;和去除所述牺牲层的步骤。

通过使用热固性树脂作为牺牲层,可以在接合压电基板的厚板和加强基板之后,在空间内注入填充热固性树脂,所以不需要用于形成牺牲层的蒸镀装置和CVD(Chemical Vapor Deposition)装置等高价装置。

附图说明

图1是表示本发明的实施方式1涉及的拉姆波式高频设备的立体图。

图2是示意性地表示图1中的A-A切断面的剖面图。

图3是表示本发明的实施方式1涉及的拉姆波式高频设备的频率温度特性的曲线图。

图4是示意性地表示本发明的实施方式2涉及的拉姆波式高频设备的剖面图。

图5是示意性地表示本发明的实施方式3涉及的拉姆波式高频设备的立体图。

图6是示意性地表示本发明的实施方式4涉及的拉姆波式高频设备的立体图。

图7是示意性地表示本发明的实施方式5涉及的拉姆波式高频设备的立体图。

图8是示意性地表示本发明的实施方式5涉及的拉姆波式高频设备被安装在封装内的状态的剖面图。

图9是示意性地表示本发明的制造方法1涉及的拉姆波式高频设备的主要制造步骤的剖面图。

图10是示意性地表示在本发明的制造方法2涉及的实施方式4中说明的拉姆波式高频设备的部分步骤的剖面图。

图11是示意性地表示在本发明的制造方法3涉及的实施方式1中说明的拉姆波式高频设备的部分步骤的剖面图。

图12是表示采用SiO2作为本发明的实施方式4涉及的牺牲层时的制造方法的主要步骤的剖面图。

图13是表示采用热固性树脂作为本发明的实施方式5涉及的牺牲层时的制造方法的主要步骤的剖面图。

图14是表示本发明的制造方法6,(a)是表示形成牺牲层后的状态的立体图,(b)是表示(a)中的C-C切断面的剖面图。

图15是表示本发明的制造方法7涉及的形成由热固性树脂构成的牺牲层的状态的剖面图。

具体实施方式

以下,参照附图说明本发明的实施方式。

图1~图3表示本发明的实施方式1涉及的拉姆波式高频设备,图4表示实施方式2涉及的拉姆波式高频设备,图5表示实施方式3涉及的拉姆波式高频设备,图6表示实施方式4涉及的拉姆波式高频设备,图7、8表示实施方式5涉及的拉姆波式高频设备。图9~图11表示本发明的拉姆波式高频设备的制造方法。

(实施方式1)

图1、图2表示实施方式1涉及的拉姆波式高频设备,图1是其立体图,图2是示意性地表示图1中的A-A切断面的剖面图。在图1中,拉姆波式高频设备10通过接合压电基板20和加强基板50而构成。

压电基板20是由石英基板构成的具有相同厚度的薄板,在一个主面上形成有由梳齿状铝构成的IDT电极30,在IDT电极30的拉姆波行进方向两侧形成有一对反射器41、42。IDT电极30具有IN/OUT电极31和GND电极32。IN/OUT电极31具有多个电极指31a和连接电极指31a的母线(bus bar)31b。GND电极32具有多个电极指32a和连接电极指32a的母线32b。并且,电极指31a、32a交替配置,形成交叉指电极。

反射器41、42分别由配置成格子状的电极指41a、42a,连接电极指41a的两端的母线41b,和连接电极指42a的两端的母线42b构成。

另外,这样形成有IDT电极30的拉姆波式高频设备10被称为1端口谐振器。

然后,参照图2说明IDT电极30和反射器41、42及加强基板50的关系。也参照图1。在图2中,把电极指31a和32a之间的间距表述为PI,把电极指31a和32a的线宽表述为LI,把IN/OUT电极31和GND电极32各自的间距表述为拉姆波的波长λ,把电极厚度表述为HI。此时,拉姆波的波长λ被设定为间距PI的2倍。

并且,把反射器42的电极指42a的间距表述为Pr,把线宽表述为Lr,把厚度表述为Hr

在拉姆波式高频中,压电基板20的厚度H被设定为使其与拉姆波的波长λ的关系在上述专利文献2记述的0<2H/λ≤10的范围内,由此可以有效激励拉姆波,这已被公知。因此,压电基板20的厚度为几微米~几十微米。

形成有上述的IDT电极30和反射器41、42的压电基板20的另一个主面、即背面侧接合在加强基板50上。加强基板50在本实施方式中为利用硅构成的板状基板,在中央部形成有箱状凹部53。因此,加强基板50由设在中央部的凹部53和设在该凹部53的整个周缘上的缘部51构成。

所述压电基板20使用化学接合或粘接剂等接合手段与加强基板50的缘部51上表面的接合面52接合,从而形成空间54。该空间54内为真空状态。此时,接合面52如图1中的内周面P所示,形成了离开IDT电极30和反射器41、42的范围、即面积大于拉姆波的传输区域的空间54。因此,接合不会对拉姆波的传输带来任何影响。

并且,压电基板20的整个周缘部接合在加强基板50的缘部51上,从而实现加强。

这样构成的拉姆波式高频设备10通过向IDT电极30输入规定频率的输入驱动信号来激励拉姆波,并且在压电基板20的正反面上反射的同时向反射器41、42的方向传输。并且,通过反射器41、42反射。

下面,说明本实施方式的拉姆波式高频设备10的频率温度特性。

图3是表示拉姆波式高频设备10的频率温度特性的曲线图。纵轴表示谐振频率偏差(ppm),横轴表示温度(℃)。如图3所示,压电基板20使用石英基板的拉姆波式高频设备10,实现了优于STW切石英基板、ST切石英基板(ST-SAW)的频率温度特性。

因此,根据前述实施方式1,凹部53(即空间54)的整个周缘部接合在加强基板50上,所以即使激励条件所要求的压电基板20的厚度为几微米,也能够保持提高机械强度、不易破裂且容易操作的拉姆波式高频设备10。

并且,在压电基板20和加强基板50之间设置面积大于拉姆波的传输区域的空间54,使空间54内部成为真空,所以能够确保机械强度,同时排除压电基板背面的拉姆波激励的能量损失,能够实现激励效率高、并且具有稳定的谐振特性的拉姆波式高频设备10。

并且,通过使用石英基板作为压电基板,可以实现优于STW切石英基板、ST切石英基板(ST-SAW)的频率温度特性。

(实施方式2)

下面,参照附图说明本发明的实施方式2。前述实施方式1(参照图2)在加强基板侧设置凹部,而实施方式2的特征是设在压电基板侧。因此,主要说明与实施方式1的不同之处。

图4是示意性地表示实施方式2涉及的拉姆波式高频设备10的剖面图。在图4中,压电基板20在一个主面(表面)上形成有IDT电极30和反射器41、42,在另一个主面(背面)上形成有箱状凹部23。

凹部23的底部厚度H被设定为使其与拉姆波的波长λ的关系在0<2H/λ≤10的范围内。在该凹部23的周围形成有缘部21,缘部21的上表面(在图中为下表面)的接合面22通过化学接合或粘接剂接合在加强基板50上,从而形成空间24。加强基板50利用由硅构成的厚板形成。

因此,根据实施方式2,压电基板20使缘部21成为加强部,并与加强基板50接合,从而提高机械强度。并且,空间24内部成为真空状态。由此,具有与前述实施方式1相同的效果。

(实施方式3)

下面,参照附图说明本发明的实施方式3的拉姆波式高频设备。前述实施方式1(参照图2)在加强基板上设置用于形成空间的箱状凹部,而实施方式3的特征是设置槽状凹部。因此,主要说明不同之处。

图5是示意性地表示实施方式3涉及的拉姆波式高频设备110的立体图。

在加强基板150上形成有槽状(正面观看大致为“”状)的凹部153。凹部153形成为横穿加强基板150,所以宽度方向的侧面开口,在长度方向两侧设有缘部151。并且,在该缘部151的上表面的接合面152上,通过化学接合或粘接剂等接合手段使压电基板20与加强基板150接合,从而形成空间154。压电基板20的结构与实施方式1(参照图2)所示的压电基板相同。

另外,凹部153只要具有离开IDT电极30和反射器41、42的范围、即大于拉姆波的传输区域的面积,则不限定其形成方向。

(实施方式4)

下面,参照附图说明本发明的实施方式4的拉姆波式高频设备。前述实施方式2(参照图4)在压电基板上设置用于形成空间的箱状凹部,而实施方式4的特征是设置槽状凹部。因此,主要说明不同之处。

图6是示意性地表示实施方式4涉及的拉姆波式高频设备210的立体图。在压电基板120上形成有槽状(正面观看大致为“”状)的凹部123。凹部123形成为横穿压电基板120,所以宽度方向的侧面开口,在长度方向两侧设有缘部121。并且,在该缘部121的上表面(在图中为下表面)的接合面122上,通过化学接合或粘接剂等接合手段使压电基板120与加强基板250接合,从而形成空间124。加强基板250的结构与实施方式2(参照图4)所示的压电基板相同。

另外,凹部123只要具有离开IDT电极30和反射器41、42的范围、即大于拉姆波的传输区域的面积,则不限定其形成方向。

因此,根据前述实施方式3和实施方式4,虽然具有凹部153和凹部123分别设在加强基板150上或压电基板120上的差异,但可以提高压电基板120的结构强度,具有与前述实施方式1、2大致相同的效果。

并且,凹部123或凹部153的正面观看时的形状为压电基板120或加强基板150中对置的一对侧面开口的大致“”状。具体情况将在后面的制造方法中说明,在凹部123或凹部153内形成牺牲层,具有在形成IDT电极后,能够容易从侧面开口部去除牺牲层的效果。

(实施方式5)

下面,参照附图说明本发明的实施方式5涉及的拉姆波式高频设备。实施方式5的特征是将前述实施方式1~实施方式4所示的拉姆波式高频设备10、110、210中任一方收纳在封装内。此处,示例说明实施方式1所示的拉姆波式高频设备10,对相同部分赋予相同符号。

图7是示意性地表示实施方式5涉及的拉姆波式高频设备10的立体图。在图7中,在形成于压电基板20表面上的IDT电极30、反射器41、42的母线31b、32b、41b、42b的上表面设有多个焊盘。

更加具体地讲,在IDT电极30的母线31b、32b各自的上表面设有各两个焊盘33,合计四个。并且,在反射器41、42各自的母线41b、42b上也设有各两个焊盘34,合计四个。这些焊盘33、34利用铜、焊锡等金属和导电性粘接剂等构成,形成为大致半球状的大致相同的大小。

并且,焊盘33、34如图7所示,被设置成在俯视时总体上平衡,以便将拉姆波式高频设备10收纳接合在封装60(参照图8)内。因此,焊盘33、34的设置位置、设置数量没有限定。

将这样形成有焊盘33、34的拉姆波式高频设备10安装在封装60内。

图8是示意性地表示拉姆波式高频设备10被安装在封装60内的状态的剖面图,表示图7中的B-B切断面。也参照图7。在图8中,封装60是利用壳体70和盖体80形成的容器。在本实施方式中,壳体70和盖体80均利用陶瓷形成。

壳体70通过层叠基体70a和缘部70b而形成,在基体70a和缘部70b的接合部上,形成于基体70a内侧表面的连接电极71或连接电极72延伸到设于基体70a背面的外部连接端子75或外部连接端子76(省略图示连接状态)。

拉姆波式高频设备10面向压电基板20插入基体70a侧。此处,设于母线31b上的焊盘33配置在连接电极71的位置上,设于母线32b上的焊盘33配置在连接电极72的位置上,分别设于母线41b、42b上的焊盘34配置在电极焊盘73、74的位置上,使用加热、压接等手段一并进行接合。把这种接合称为倒装片安装。

因此,IN/OUT电极31(图1所示)连接外部连接端子75,GND电极32(图1所示)连接外部连接端子76,可以从外部输入规定的激励驱动信号。

并且,反射器41、42与IDT电极30在电气上是独立的,所以电极焊盘73、74是为了获取拉姆波式高频设备10的良好平衡、并且提高与基体70a的接合强度而设置的。

在将拉姆波式高频设备10安装在壳体70内之后,使用化学接合或粘接剂等接合手段将盖体320接合在缘部70b上。此时,封装60内部的空间61处于真空状态。

在本实施方式中,举出将实施方式1所示的拉姆波式高频设备10收纳在封装60内的示例进行了说明,实施方式2~实施方式4所示的拉姆波式高频设备也可以利用相同方法安装收纳在封装60内。

在实施方式1、2中,空间54和空间24内部为真空,通过使封装60内部的空间61成为真空,拉姆波的激励区域全部成为真空状态。

并且,在实施方式3、4中,在进行封装时使空间61成为真空,此时可以同时使一部分开口的空间154和空间124内部也成为真空状态。

因此,根据前述实施方式5,利用加强基板50加强的拉姆波式高频设备10被进一步收纳在封装60内,所以能够保护拉姆波式高频设备10不受外部环境的影响。

另外,公知在IDT电极30受到损伤等时或者附着了水分和尘埃时,激励特性明显劣化。但是,通过收纳在封装60内并且使处于真空状态,可以保护IDT电极30,可以保持良好的谐振特性。

另外,由于使封装内保持真空状态,所以在IDT电极30侧也能够抑制能量损失。

并且,通过在不影响激励的母线31b、32b、41b、42b上设置焊盘33、34,并接合在连接电极71、72和电极焊盘73、74上,所以可以实现与连接电极71、72的电气连接,并且将拉姆波式高频设备10可靠地固定在封装60(基体70a)上。

另外,通过采用倒装片安装,与以往在声表面波元件的安装中使用的引线接合安装相比,可以兼作到固定和连接,因此能够缩小安装所需要的厚度和面积等空间,可以实现扁平化、小型化。

(制造方法1)

下面,参照附图说明本发明的拉姆波式高频设备的制造方法。

图9是示意性地表示本发明的拉姆波式高频设备的主要制造步骤的剖面图。另外,在图9中,示例说明在实施方式3(参照图5)中说明的在加强基板150上形成槽状凹部153的拉姆波式高频设备110。

首先,如图9(a)所示,在由硅平板构成的加强基板150上形成槽状的凹部153。作为凹部153的形成方法,有利用蚀刻法去除相当于凹部153的部分的方法、和在平板的基体155的相对的两边端部层叠缘部151的方法。并且,由于形成槽状,所以也可以选择磨削等加工方法。

然后,如图9(b)所示,利用CVD法等在凹部153内部形成由氧化锌(ZnO)构成的牺牲层156,使用CMP法等对牺牲层156和缘部151的上表面进行平滑处理。

另外,作为牺牲层156,除氧化锌外,也可以采用氮化铝(AlN)和Al、Cu、Cr、Ag等金属。这些牺牲层材料的蚀刻液与由石英构成的压电基板不同,选择在后面说明的去除牺牲层时压电基板的背面不会因牺牲层的蚀刻而溶解的材料。

并且,如图9(c)所示,使用化学接合或粘接剂等接合手段,将作为压电基板的原材料的石英基板的厚板20a接合在形成有牺牲层156的加强基板150上。另外,此处,把厚板20a的厚度设为100μm。

然后,如图9(d)所示,在厚板20a和加强基板150a相接合的状态下,研磨厚板20a,形成具有规定厚度的压电基板20。压电基板20的厚度H被设定为使其与拉姆波的波长λ的关系在0<2H/λ≤10的范围内,具体地讲设为几微米。

然后,使用光刻技术,在压电基板20的表面上形成IDT电极30、反射器41、42(图9(e)所示)。

然后,如图9(f)所示,通过释放蚀刻去除牺牲层156,形成空间154。

另外,在释放蚀刻步骤之后,也可以是形成IDT电极30、反射器41、42的步骤。

焊盘33、34(参照图7)的形成,也可以在形成IDT电极30、反射器41、42之后进行。

(制造方法2)

下面,参照图10说明在前述实施方式4中说明的拉姆波式高频设备210(参照图6)的制造方法2,主要说明与前述制造方法的不同之处。

首先,利用蚀刻法等在石英基板的厚板20a上形成槽状的凹部123,利用CVD法等在该凹部123内部形成由氧化锌构成的牺牲层125,使用CMP法等对牺牲层125和缘部121的上表面进行平滑处理。

并且,使用化学接合或粘接剂等接合手段接合在加强基板150上。图10(a)表示接合后的状态。

然后,如图10(b)所示,研磨厚板20a,形成具有规定厚度的压电基板120。压电基板120的厚度H被设定为使其与拉姆波的波长λ的关系在0<2H/λ≤10的范围内,具体地讲设为几微米。

以后,IDT电极30、反射器41、42的形成方法、牺牲层125的去除方法,与前述方法、步骤(参照图9(e)、图9(f))相同,所以省略说明。

根据上述的拉姆波式高频设备的制造方法,如图9所示,在加强基板150的凹部153内形成牺牲层156,在压电基板为厚板的状态下进行接合,并研磨到规定的厚度。或者,如图10所示,在压电基板为厚板20a的状态下,在凹部123内形成牺牲层125,接合凹部123和加强基板150,并研磨到规定的厚度。然后,去除牺牲层156或牺牲层125,形成空间154、124。

因此,在即将完成拉姆波式高频设备之前,设有牺牲层156或牺牲层125,所以在制造步骤中途能够减轻压电基板的开裂,可以提高成品率。

并且,凹部153或凹部123形成为槽状,所以能够容易从槽的开口部去除牺牲层156或牺牲层125。

(制造方法3)

然后,参照附图说明在前述实施方式1中说明的拉姆波式高频设备的制造方法。

图11表示本发明的制造方法3,是示意性地表示在实施方式1中说明的拉姆波式高频设备10(参照图1、2)的部分步骤的剖面图。该拉姆波式高频设备10的结构为在加强基板50上形成有箱状凹部53,凹部53在接合了压电基板20(厚板20a)的状态下没有开口部。因此,不能在图9所示的制造方法中去除牺牲层56。此处,该方法的特征是在加强基板50上设置凹部53和与凹部53的底部连通的贯通孔。

首先,在加强基板50上设置箱状凹部53、连通凹部53的底部的贯通孔57、58。并且,形成至少填充凹部53的牺牲层56(图1(a)所示)。这样,研磨包括牺牲层56的加强基板50的上表面使其变平滑,接合压电基板20的厚板20a。以后的步骤通过与图9(c)~(f)相同的步骤,形成图11(b)所示的拉姆波式高频设备10。

此处,牺牲层56的去除可以使用设于加强基板50上的贯通孔57、58进行。在去除牺牲层56后,虽然没有图示,但形成空间54和贯通孔57、58连通的状态。

另外,在图11中设置贯通孔57、58,但贯通孔的数量不限于两个,也可以是一个或更多个。并且,贯通孔的形状也没有限定,例如可以是圆形或四边形。

将这样形成的拉姆波式高频设备10收纳于在实施方式5(参照图8)中说明的封装60内,由此可以使空间54内也处于真空状态。

另外,前述实施方式2的拉姆波式高频设备10也可以按照相同的制造方法形成。该拉姆波式高频设备10(参照图4)的结构为在压电基板20上形成有箱状的凹部23,凹部23在接合了压电基板20(厚板20a)的状态下没有开口部。因此,虽然没有图示,但也可以在加强基板50上设置与压电基板20的凹部23连通的贯通孔,通过从该贯通孔去除牺牲层,可以进行制造。

因此,根据上述的制造方法,即使是在压电基板20或加强基板50上形成有箱状凹部的实施方式1、2所述的结构,通过设置与凹部连通的贯通孔,也可以使用该贯通孔去除牺牲层。

(制造方法4)

下面,参照附图说明本发明的拉姆波式高频设备的制造方法4。该制造方法4是采用SiO2作为牺牲层时的制造方法,是结构与在前述实施方式3(参照图5)中说明的拉姆波式高频设备110相同的拉姆波式高频设备的制造方法。因此,主要说明不同之处。也参照表示实施方式3的拉姆波式高频设备的制造方法的图9。

图12表示制造方法4,是表示采用SiO2作为牺牲层时的制造方法的主要步骤的剖面图。首先,如图12(a)所示,在石英基板的厚板20a的背面侧整个面上形成蚀刻保护层(有时称为蚀刻阻止层)25。蚀刻保护层25是较薄的金属层,作为材质,从铜和铝等、蚀刻液与石英不同的材料中选择。蚀刻保护层25利用蒸镀法和溅射法等形成。

然后,利用CVD法等在设于加强基板150内的凹部153内部形成由SiO2构成的牺牲层156(参照图9(a)、图9(b))。并且,利用CMP法进行平滑处理后,如图12(b)所示,接合形成有蚀刻保护层25的石英基板的厚板20a和形成有牺牲层156的加强基板150,将石英基板的厚板20a研磨到规定的石英基板20的厚度。

然后,如图12(c)所示,利用光刻法在石英基板20的表面上形成IDT电极30和反射器41、42。然后,在包括IDT电极30和反射器41、42在内的石英基板20的整个表面上涂覆抗蚀剂(未图示),通过蚀刻来去除牺牲层156。

关于牺牲层156的去除,使用DHF(稀氟酸)和BHF(缓冲氟酸)作为蚀刻液。此时,作为牺牲层的SiO2被溶解去除,但由硅构成的加强基板150、被抗蚀剂覆盖的石英基板20的表面和蚀刻保护层25未被溶解。然后,通过蚀刻去除蚀刻保护层25。蚀刻保护层25的去除范围只要是大于拉姆波的传输区域的面积即可,即IDT电极30和反射器41、42的形成范围的外侧的范围。

并且,如果去除抗蚀剂,则形成图12(d)所示的在石英基板20和加强基板150之间形成有空间154的拉姆波式高频设备110。

另外,也可以是在去除牺牲层156和蚀刻保护层25后,再去除抗蚀剂,形成IDT电极30和反射器41、42的步骤。

另外,上述的制造方法示例利用槽状凹部153形成空间154的实施方式3的拉姆波式高频设备110进行了说明,但也可以应用于具有箱状凹部53的实施方式1所述的拉姆波式高频设备10(参照图1、图11)。

并且,还可以应用于在石英基板20上设置凹部153的实施方式4(参照图6)所述的拉姆波式高频设备210。该情况时,在凹部123的内面形成蚀刻保护层即可。

因此,根据上述的制造方法4,在牺牲层156的去除步骤中,在石英基板20和牺牲层156接触的背面设置蚀刻保护层156,由此,作为MEMS结构体的牺牲层,在将一般石英的SiO2用作牺牲层时,也能够在牺牲层的蚀刻步骤中保护石英基板20。

(制造方法5)

下面,参照附图说明本发明的拉姆波式高频设备的制造方法5。该制造方法是采用热固性树脂作为牺牲层的制造方法,是结构与在前述实施方式3(参照图5)中说明的拉姆波式高频设备110相同的拉姆波式高频设备的制造方法。因此,主要说明不同之处,也参照表示实施方式3的拉姆波式高频设备的制造方法的图9。

图13是表示制造方法5涉及的采用热固性树脂作为牺牲层130时的制造方法的主要步骤的剖面图。首先,如图13(a)所示,接合形成有凹部153的加强基板150和石英基板的厚板20a,在加强基板150和石英基板的厚板20a之间形成空间154。

然后,将加强基板150和石英基板的厚板20a以相接合的状态插装在安装夹具350上。图13(b)是表示图5所示的拉姆波式高频设备110在与拉姆波的传输方向垂直的方向上的切断面(宽度方向断面)的剖面图,图13(c)是俯视图。在图13(b)、(c)中,加强基板150形成为在宽度方向上大于石英基板的厚板20a,并向宽度方向两侧突出。安装夹具350形成为利用缘部350a包围加强基板150的外周。并且,缘部350a从加强基板150的上表面突出。

在安装到安装夹具350上的状态下,在石英基板的厚板20a和安装夹具350的缘部350a之间形成有开口部153a、153b。开口部153a、153b设在与IDT电极30、反射器41、42的并行设置方向(即、拉姆波的传输方向)垂直的两端面方向上。从这些开口部153a、153b注入液状的热固性树脂填充在空间154中。作为热固性树脂,可以使用酚醛树脂、环氧树脂、脲醛树脂、密胺树脂、不饱和聚酯树脂、聚氨酯树脂、热固性聚酰胺树脂等。并且,通过加热使热固性树脂固化,从而形成牺牲层130。

另外,在注入热固性树脂时,如果从开口部153a、153b的任意一方注入、从另一方吸引,则空间154内部不会残留气泡等。

在形成牺牲层130后,将石英基板的厚板20a研磨到规定的厚度,形成IDT电极30和反射器41、42,去除牺牲层130,形成拉姆波式高频设备110。研磨以后的步骤与图9(c)~(f)所示的步骤相同,所以省略图示。

牺牲层130的去除可以通过从开口部153a、153b浸入溶剂等实现。因此,开口部153a、153b的大小适当设定为容易注入热固性树脂、并且容易浸入溶剂的大小即可。在去除牺牲层130后,能够容易将拉姆波式高频设备110从安装夹具350中卸下。

并且,也可以是在去除牺牲层130后形成IDT电极30和反射器41、42的步骤,所以也可以在去除牺牲层130并从安装夹具350上卸下的状态下,形成IDT电极30和反射器41、42。

因此,根据制造方法5,通过使用热固性树脂作为牺牲层130,可以在接合石英基板的厚板20a和加强基板150后,向空间154内注入填充热固性树脂,不需要用于形成牺牲层130的蒸镀装置和CVD装置等高价装置。

并且,牺牲层154的表面效仿石英基板20的背面而变平滑,所以不需要CMP等平滑处理,可以缩短制造步骤。另外,开口部153a、153b也可以设在IDT电极30、反射器41、42的并行设置方向上。

(制造方法6)

下面,参照附图说明拉姆波式高频设备的制造方法6。该制造方法6是上述制造方法5的变形例,是使用热固性树脂作为牺牲层130、而且不使用安装夹具的制造方法。

图14表示制造方法6,图14(a)是表示形成牺牲层130后的状态的立体图,图14(b)是表示图14(a)中的C-C切断面的剖面图。在图14(a)、(b)中,在加强基板150上形成有箱状凹部155。

凹部155形成为大于石英基板的厚板20a的宽度方向两侧,凹部155的周缘被4片缘部151a~151d包围着。因此,在石英基板的厚板20a和加强基板150相接合的状态下,在石英基板的厚板20a的宽度方向两侧形成开口部155a、155b。

从该开口部155a、155b向空间154内注入填充液状的热固性树脂。并且,通过加热使其固化,形成牺牲层130。在形成牺牲层130后,将石英基板的厚板20a研磨到规定的厚度,形成IDT电极和反射器,去除牺牲层130。由此形成拉姆波式高频设备110。

牺牲层130的去除可以通过从开口部153a、153b浸入溶剂等实现。因此,开口部153a、153b的大小(宽度)适当设定为容易注入热固性树脂、并且容易浸入溶剂的大小即可。

因此,根据上述的制造方法6,在向空间154内填充热固性树脂时,可以利用缘部151a~151d将热固性树脂封入加强基板150的凹部155内,所以不需要安装夹具等,即可发挥与前述制造方法5相同的效果。另外,开口部153a、153b也可以设在IDT电极30、反射器41、42的并行设置方向上。

(制造方法7)

下面,参照附图说明拉姆波式高频设备的制造方法7。该制造方法是上述制造方法6的变形例,在加强基板上形成箱状凹部。作为拉姆波式高频设备的形式与前述实施方式1相同,其特征是相对图11所示的制造方法,把牺牲层作为热固性树脂。只说明不同之处。

图15表示制造方法7,是表示形成由热固性树脂构成的牺牲层130的状态的剖面图。在图15中,在加强基板50上形成箱状凹部53。凹部53在接合了石英基板的厚板20a的状态下,形成被缘部51封闭的空间54。

在凹部53的底面上设有使加强基板50与空间54的内外连通的贯通孔57、58。液状热固性树脂在空间54内的注入从贯通孔57或贯通孔58中一方进行,另一方敞开或进行吸引。向空间54内填充热固性树脂后,使其加热固化形成牺牲层130。在形成牺牲层130后,依次将石英基板的厚板20a研磨到规定的厚度,形成IDT电极和反射器,去除牺牲层130。由此形成拉姆波式高频设备。

牺牲层130的去除通过使用设于加强基板50上的贯通孔57、58进行。在去除牺牲层56后,虽然没有图示,但形成空间54和贯通孔57、58连通的状态。

另外,在图15中为设置两个贯通孔57、58的结构,但贯通孔的数量不限于两个,可以是一个或更多个。并且,贯通孔的形状也没有限定,例如可以是圆形或四边形。

因此,根据上述的制造方法7,除可以获得与前述制造方法5、6相同的效果外,不需要制造方法5那样的安装夹具。并且,石英基板20和加强基板50的平面形状一致,所以不需要前述制造方法6那样的用于封入液状热固性树脂的缘部,所以能够实现小型化。

并且,在向空间54内封入液体或气体后,可以密封贯通孔57、58。这样,通过使石英基板20背面的界面成为液体或气体,可以改变拉姆波的背面侧的反射状态,可以增加谐振模式的选择方案。

另外,本发明不限于前述实施方式,在可以达到本发明目的的范围内的变形和改良等包含于本发明中。

例如,在前述实施方式中说明的结构中,作为压电基板示例石英基板进行了说明,但也可以是钽酸锂、铌酸锂、四硼酸锂、兰克赛(langasite)、langanite、铌酸钾等的压电基板、及其他非压电基板。

并且,根据前述形成牺牲层的制造方法,作为压电基板,也可以适用于氧化锌、氮化铝、五氧化钽等压电性薄膜,硫化镉、硫化锌、砷化镓、锑化铟等的压电半导体。

另外,在前述实施方式中,作为拉姆波式高频设备示例1端口谐振器进行了说明,但也可以应用于2端口谐振器或具有IDT电极和反射器的滤波器。

因此,根据本发明,可以提供提高机械强度、实现稳定特性的拉姆波式高频设备,以及在制造步骤中不易破裂、且提高成品率的制造方法。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号