首页> 外文OA文献 >Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research : evaluation of different exposure assessment methods
【2h】

Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research : evaluation of different exposure assessment methods

机译:用于流行病学研究的射频电磁场(RF-EmF)个人暴露的分类:不同暴露评估方法的评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of personal exposure meters (exposimeters) has been recommended for measuring personal exposure to radio frequency electromagnetic fields (RF-EMF) from environmental far-field sources in everyday life. However, it is unclear to what extent exposimeter readings are affected by measurements taken when personal mobile and cordless phones are used. In addition, the use of exposimeters in large epidemiological studies is limited due to high costs and large effort for study participants. In the current analysis we aimed to investigate the impact of personal phone use on exposimeter readings and to evaluate different exposure assessment methods potentially useful in epidemiological studies. We collected personal exposimeter measurements during one week and diary data from 166 study participants. Moreover, we collected spot measurements in the participants' bedrooms and data on self-estimated exposure, assessed residential exposure to fixed site transmitters by calculating the geo-coded distance and mean RF-EMF from a geospatial propagation model, and developed an exposure prediction model based on the propagation model and exposure relevant behavior. The mean personal exposure was 0.13mW/m(2), when measurements during personal phone calls were excluded and 0.15mW/m(2), when such measurements were included. The Spearman correlation with personal exposure (without personal phone calls) was 0.42 (95%-CI: 0.29 to 0.55) for the spot measurements, -0.03 (95%-CI: -0.18 to 0.12) for the geo-coded distance, 0.28 (95%-CI: 0.14 to 0.42) for the geospatial propagation model, 0.50 (95%-CI: 0.37 to 0.61) for the full exposure prediction model and 0.06 (95%-CI: -0.10 to 0.21) for self-estimated exposure. In conclusion, personal exposure measured with exposimeters correlated best with the full exposure prediction model and spot measurements. Self-estimated exposure and geo-coded distance turned out to be poor surrogates for personal exposure.
机译:建议使用个人暴露测量仪(测光仪)来测量日常生活中环境远场辐射源对射频电磁场(RF-EMF)的个人暴露。但是,目前尚不清楚使用个人移动电话和无绳电话时所进行的测量会在多大程度上影响光度计的读数。另外,由于高昂的成本和研究参与者的巨大努力,在大型流行病学研究中使用测光计受到了限制。在当前的分析中,我们旨在调查个人电话使用对辐射计读数的影响,并评估可能在流行病学研究中使用的不同暴露评估方法。我们收集了一周的个人测光仪测量值,并收集了166名研究参与者的日记数据。此外,我们收集了参与者卧室的现场测量值和自我估计的暴露数据,通过根据地理空间传播模型计算地理编码距离和平均RF-EMF来评估居民对固定站点发射机的暴露,并开发了暴露预测模型基于传播模型和暴露的相关行为。当排除个人电话呼叫期间的测量时,平均个人暴露为0.13mW / m(2),而当包括此类测量时,则为0.15mW / m(2)。对于现场测量,Spearman与个人暴露(无个人电话)的相关性为0.42(95%-CI:0.29至0.55),地理编码距离为-0.03(95%-CI:-0.18至0.12)。 (95%-CI:0.14至0.42)(针对地理空间传播模型),0.50(95%-CI:0.37至0.61)对于完全暴露预测模型和0.06(95%-CI:-0.10至0.21)对于自我估计接触。总之,用曝光计测量的个人暴露与完整暴露预测模型和现场测量之间的相关性最好。自我估计的曝光量和地理编码的距离被证明是对个人曝光量的不良替代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号