首页> 外文OA文献 >Analysis of amorphous-nanocrystalline silicon thin films by High Resolution Transmission Electron Microscopy and Time-of-Flight Elastic Recoil Detection Analysis
【2h】

Analysis of amorphous-nanocrystalline silicon thin films by High Resolution Transmission Electron Microscopy and Time-of-Flight Elastic Recoil Detection Analysis

机译:高分辨率透射电子显微镜和飞行时间弹性反冲检测分析非晶态纳米晶硅薄膜

摘要

Amorphous-nanocrystalline silicon (a-nc-Si:H) is mixed-phase material consisting of silicon nanocrystals embedded in amorphous silicon (a-Si:H) matrix. It has promising technological applications in photovoltaic devices and thin film transistor. Electrical and optical properties of a-nc-Si:H can be controlled by silicon nanocrystals size distribution and ratio of amorphous/nanocrystalline volume contribution. Because of better resistivity to Staebler-Wronski degradation, sufficient electrical conductivity, variable energy bandgap and absorption coefficient of the same order, compared to amorphous silicon, a-nc-Si:H are promising candidate for application in “third generation” thin film solar cells.ud100 nm thick a-nc-Si:H/a-Si:H bilayer structure (Figure 1) are prepared by Plasma Enhanced Chemical Vapour Deposition (PECVD) using radio frequency discharge in gas mixture of silane (90%) and hydrogen (10%) for amorphous layer while dilution was enhanced up to 94% hydrogen in gas mixture for formation a-nc-Si:H [1]. The substrate was glass and glass covered with SnOx thin film. The power density during the formation of a-nc-Si:H layer was 20 mW/cm2 resulting in film growth rate of 2 nm/min.udAs seen by high resolution transmission electron microscopy (HRTEM), the films contained nanocrystals of silicon (2-10 nm in size) embedded in a-Si:H matrix. The size of nanocrystals and crystal to amorphous fraction are increased starting from substrate towards surface of the film. Amorphous matrix looked uniform except in the area close to a-Si:H/a-nc-Si:H interface where spots brighter than average appeared (Figure 1). These areas can be attributed to less density material, presumably voids. It is assumed that the surface of voids is “decorated” with hydrogen that saturates silicon “dangling bonds” [2]. That is why distribution of hydrogen should indicate density fluctuation in material.udThe in-depth distribution of hydrogen atoms in 100 nm thick a-nc-Si:H/a-Si:H with 10 nm resolution was estimated by Time-of-Flight Elastic Recoil Detection Analysis (TOF ERDA) using previously described setup [3]. TOF-ERDA (Figure 2) showed non uniform distribution of hydrogen across the depth with maximum close to a-Si:H/a-nc-Si:H interface that coincidence with less density material seen by HRTEM. This supports the idea about important influence of voids in crystal formation, in particularly in nucleation phase. ududReferences:ud[1] D. Gracin et al., J. Appl. Cryst. 40 (2007) S373–S376ud[2] S. D.Gracin, U.V.Desnica nd M.Ivanda, J.Non-Cryst. Solids 149, 257 (1992)ud[3] Z.Siketić, I.Bogdanović Radović, Milko Jakšić, Thin Solid Films 518, 2617 (2010).
机译:非晶纳米晶硅(a-nc-Si:H)是由嵌入非晶硅(a-Si:H)基质中的硅纳米晶体组成的混合相材料。在光伏器件和薄膜晶体管中具有广阔的技术应用前景。 a-nc-Si:H的电学和光学性质可以通过硅纳米晶体的尺寸分布和非晶/纳米晶体的体积比来控制。由于与Staebler-Wronski降解相比具有更好的电阻率,足够的电导率,可变能带隙和相同阶数的吸收系数,与非晶硅相比,a-nc-Si:H是有望用于“第三代”薄膜太阳能的候选材料 ud100 nm厚的a-nc-Si:H / a-Si:H双层结构(图1)是通过等离子增强化学气相沉积(PECVD)在硅烷(90%)和氢(10%)用于非晶层,同时稀释将混合气体中的氢提高至94%,以形成a-nc-Si:H [1]。基板是玻璃,玻璃上覆盖有SnOx薄膜。形成a-nc-Si:H层期间的功率密度为20 mW / cm2,导致薄膜生长速率为2 nm / min。 ud如通过高分辨率透射电子显微镜(HRTEM)所见,薄膜包含硅纳米晶体(尺寸为2-10 nm)嵌入a-Si:H矩阵中。纳米晶体的尺寸和晶体至无定形部分的比例从基底向薄膜表面开始增加。除了靠近a-Si:H / a-nc-Si:H界面的区域中出现比平均亮的斑点,非晶态基质看起来均匀。(图1)。这些区域可归因于密度较小的材料,大概是空隙。假定空隙表面被氢“饱和”,氢使硅“悬空键”饱和[2]。这就是为什么氢的分布应该指示材料中的密度波动的原因。 ud通过Time-of-Time估算了100 nm厚的a-nc-Si:H / a-Si:H的10 nm分辨率中氢原子的深度分布。使用前述设置[3]进行飞行弹性后坐力检测分析(TOF ERDA)。 TOF-ERDA(图2)显示氢在整个深度上分布不均匀,最大值接近a-Si:H / a-nc-Si:H界面,这与HRTEM观察到的密度较小的材料相吻合。这支持了关于空隙在晶体形成中,特别是在成核相中的重要影响的想法。 ud ud参考文献: ud [1] D. Gracin等人,J。Appl。水晶40(2007)S373–S376 ud [2] S. D. Gracin,U.V. Desnica nd M.Ivanda,J.Non-Cryst。固体149,257(1992) ud [3]Z.Siketić,I.BogdanovićRadović,MilkoJakšić,固体薄膜518,2617(2010)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号