...
首页> 外文期刊>Applied Surface Science >Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy
【24h】

Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy

机译:飞行时间弹性反冲检测分析和高分辨率电子显微镜分析非晶纳米晶硅薄膜

获取原文
获取原文并翻译 | 示例
           

摘要

The in-depth distribution of hydrogen atoms in 100nm-thick, amorphous-nanocrystalline, silicon films (a-nc-Si:H) was estimated by time-of-flight elastic recoil detection analysis (TOF-ERDA) using a previously described set-up. The layer with nanocrystals was deposited on a 50 nm amorphous layer by plasma-enhanced chemical vapor deposition (PECVD), using silane gas that was diluted with hydrogen. High-resolution transmission electron microscopy (HRTEM) showed that the films contained nanocrystals of silicon embedded in an amorphous Si:H matrix. The size of the nanocrystals and the crystal-to-amorphous ratio increased in the direction from the substrate toward the surface of the film. The amorphous matrix appeared uniform, except for the area close to the a-Si:H/a-nc-Si:H interface, where spots that were brighter than average appeared. These areas can be attributed to the presence of less-dense material, presumably voids. It is assumed that the surface of the voids is "decorated" with hydrogen that saturates the silicon "dangling bonds". This is why the distribution of hydrogen should indicate a density fluctuation in the material. Consistent with this assumption, the TOF-ERDA showed a non-uniform distribution of hydrogen across the depth, with a maximum value close to the a-Si:H/a-nc-Si: H interface that coincides with the less-dense material seen by the HRTEM. This supports the idea about the important influence of voids on crystal formation, particularly in the nucleation phase. After a heat treatment at 400 ℃, the distribution of hydrogen remained the same, while the total hydrogen concentration decreased. This indicated that the type of hydrogen bonding was the same across the amorphous network and assumed that the areas of less-dense material are agglomerates of smaller voids.
机译:通过飞行时间弹性反冲检测分析(TOF-ERDA),使用先前描述的装置估算了100nm厚的非晶纳米晶硅膜(a-nc-Si:H)中氢原子的深度分布-向上。使用氢稀释的硅烷气体,通过等离子体增强化学气相沉积(PECVD)将具有纳米晶体的层沉积在50 nm的非晶层上。高分辨率透射电子显微镜(HRTEM)显示,这些膜包含嵌入非晶Si:H基质中的硅纳米晶体。纳米晶体的尺寸和晶体-非晶比在从衬底到薄膜表面的方向上增加。除了靠近a-Si:H / a-nc-Si:H界面的区域外,无定形基体显得均匀,其中出现了比平均值亮的斑点。这些区域可以归因于密度较小的材料的存在,大概是空隙。假设空隙的表面被氢“饱和”,氢使硅“悬空键”饱和。这就是为什么氢的分布应指示材料中的密度波动的原因。与该假设一致,TOF-ERDA显示氢在整个深度上的分布不均匀,最大值接近a-Si:H / a-nc-Si:H界面,与低密度材料相吻合HRTEM看到的。这支持了关于空隙对晶体形成的重要影响的想法,特别是在成核阶段。 400℃热处理后,氢的分布保持不变,而总氢浓度降低。这表明在整个无定形网络中氢键的类型相同,并假设密度较小的材料区域是较小孔隙的团聚体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号