首页> 美国政府科技报告 >Viscosity determinations of some frictionally generated silicate melts: Implications for slip zone rheology during impact-induced faulting
【24h】

Viscosity determinations of some frictionally generated silicate melts: Implications for slip zone rheology during impact-induced faulting

机译:一些摩擦产生的硅酸盐熔体的粘度测定:在冲击引起的断层期间对滑移区流变学的影响

获取原文

摘要

Analytical scanning electron microscopy, using combined energy dispersive and wavelength dispersive spectrometry, was used to determine the major-element compositions of some natural and artificial glasses and their crystalline equivalents derived by the frictional melting of acid to intermediate protoliths. The major-element compositions are used to calculate the viscosities of their melt precursors using the model of Shaw at temperatures of 800-1400 C, with Fe(2)/Fe(tot) = 0.5 and for 1-3 wt percent H2O. These results are then modified to account for suspension effects in order to determine viscosities. The results have implications for the generation of pseudotachylitic breccias as seen in the basement lithologies of the Sudbury and Vredefort structures and possibly certain dimict lunar breccias. Many of these breccias show similarities with the more commonly developed pseudotachylite fault and injection veins seen in endogenic fault zones that typically occur in thicknesses of a few centimeters or less. The main difference is one of scale: Impact-induced pseudotachylite breccias can attain several meters in thickness. This would suggest that they were generated under exceptionally high slip rates and hence high strain rates and that the friction melts generated possessed extremely low viscosities.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号