...
首页> 外文期刊>Spine >Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation.
【24h】

Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation.

机译:脊柱侧弯前脊柱器械系统的生物力学评估:体外疲劳模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

STUDY DESIGN: A biomechanical study was designed to assess the bone-screw interface fixation strength among five anterior spinal instrumentation systems for scoliosis before and after a fatigue simulation. OBJECTIVES: The objectives of the current study were twofold: 1) evaluate the static (initial) strength at the bone-screw interface and 2) evaluate dynamic (post fatigue) strength of the bone-screw interface after a fatigue simulation to investigate a possible mechanism for postoperative loss of correction. SUMMARY OF BACKGROUND DATA: Although the recent advancement of anterior instrumentation for scoliosis has permitted shorter fusion segments and improved surgical correction, the loss of correction over the instrumented segments still has been reported in one-rod systems. Little is known about the mechanism for loss of correction. METHODS: Twenty-five fresh-frozen calf spines (T6-L6) were used. A total of five instrumentation systems included the following: Anterior ISOLA (ISOLA), Bad Wildungen Metz (BWM), Texas Scottish Rite Hospital system (TSRH), Cotrel-Dubousset Hoph (CDH), and Kaneda Anterior Scoliosis System (KASS). Screw pullout and rotational tests in the sagittal plane using a single vertebra were performed to investigate bone-screw interface fixation strength before and after a fatigue simulation. To simulate cyclic loading that the spine could undergo in vivo, a fatigue simulation using compressive-flexion loading up to 24,000 cycles was carried out. RESULTS: Mean maximum tensile pullout force decreased in the following order: KASS > CDH > BWM > TSRH > ISOLA (F = 29.91, P < 0.0001). KASS blunt tip screw was 26% stronger in pullout force than KASS sharp tip screw (P < 0.05). The one-rod system demonstrated a positive correlation between pullout force and both bone mineral density and screw insertional torque. For fatigue analysis the rotational strength at the most cephalad and caudal segments significantly decreased after a fatigue simulation in the one-rod system (P < 0.05). The two-rod system showed no significant decrease after a fatigue simulation. CONCLUSIONS: Simulating the cyclic loading to the construct, screw loosening at the bone-screw interface was produced in the one-rod system. This screw loosening may elucidate one mechanism for loss of correction in the one-rod system. The two-rod system may have the potential to minimize the risk of loss of correction.
机译:研究设计:进行了一项生物力学研究,以评估疲劳模拟前后五个脊柱侧弯前器械系统中骨螺钉界面固定强度。目的:本研究的目标是双重的:1)评估骨螺钉界面的静态(初始)强度; 2)评估疲劳模拟后的骨螺钉界面的动态(疲劳后)强度,以研究可能的情况。术后丧失矫正的机制。背景数据概述:尽管最近针对脊柱侧弯的器械的发展已允许较短的融合节段并改善了手术矫正,但仍在单杆系统中报告了对器械节段的矫正丧失。关于校正丢失的机制知之甚少。方法:使用25只新鲜冷冻的小牛棘(T6-L6)。总共有五个仪器系统,包括:前部ISOLA(ISOLA),Bad Wildungen Metz(BWM),德克萨斯苏格兰礼拜医院系统(TSRH),Cotrel-Dubousset Hoph(CDH)和Kaneda前侧弯系统(KASS)。在疲劳模拟之前和之后,使用单个椎骨在矢状面上进行了螺钉拔出和旋转测试,以研究骨螺钉界面的固定强度。为了模拟脊柱在体内可能经受的循环负荷,进行了使用压缩屈曲负荷的疲劳模拟,该压缩负荷高达24,000个循环。结果:平均最大拉拔力按以下顺序降低:KASS> CDH> BWM> TSRH> ISOLA(F = 29.91,P <0.0001)。 KASS钝头螺钉的拔出力比KASS尖头螺钉强26%(P <0.05)。单杆系统显示拔出力与骨矿物质密度和螺钉插入扭矩之间呈正相关。对于疲劳分析,在单杆系统中进行疲劳模拟后,大多数头和尾段的旋转强度显着降低(P <0.05)。在疲劳模拟后,两杆系统没有显示出明显的下降。结论:在单杆系统中,模拟了对结构的周期性加载,在骨-螺钉界面处的螺钉松动。这种螺钉松动可以阐明单杆系统中校正损失的一种机制。两杆系统可能具有使校正损失的风险最小化的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号