...
首页> 外文期刊>Soil Biology & Biochemistry >Sorption, microbial uptake and decomposition of acetate in soil: Transformations revealed by position-specific super(14)C labeling
【24h】

Sorption, microbial uptake and decomposition of acetate in soil: Transformations revealed by position-specific super(14)C labeling

机译:土壤中乙酸的吸收,微生物吸收和分解:通过位置特异性super(14)C标记揭示的转化

获取原文
获取原文并翻译 | 示例
           

摘要

Many previous studies on transformation of low molecular weight organic substances (LMWOS) in soil were based on applying super(14)C and/or super(13)C labeled substances. Nearly all these studies used uniformly labeled substances, i.e. all C atoms in the molecule were labeled. The underlying premise is that LMWOS transformation involves the whole molecule and it is not possible to distinguish between 1) the flux of the molecule as a whole between pools (i.e. microbial biomass, CO sub(2), DOM, SOM, etc.) and 2) the splitting of the substance into metabolites and tracing those metabolites within the pools. Based on position-specific super(14)C labeling, we introduce a new approach for investigating LMWOS transformation in soil: using Na-acetate labeled with super(14)C either in the 1st position (carboxyl group, -COOH) or in the 2nd position (methyl group, -CH sub(3)), we evaluated sorption by the soil matrix, decomposition to CO sub(2), and microbial uptake as related to both C atoms in the acetate. We showed that sorption of acetate occurred as a whole molecule. After microbial uptake, however, the acetate is split, and C from the -COOH group is converted to CO sub(2) more completely and faster than C from the -CH sub(3) group. Correspondingly, C from the -CH sub(3) group of acetate is mainly incorporated into microbial cells, compared to C from the -COOH group. Thus, the rates of C utilization by microorganisms of C from both positions in the acetate were independently calculated. At concentrations of 10 mu mol l super(-1), microbial uptake from soil solution was very fast (half-life time about 3 min) for both C atoms. At concentrations <100 mu mol l super(-1) the oxidation to CO sub(2) was similar for C atoms of both groups (about 55% of added substance). However, at acetate concentrations >100 mu mol l super(-1), the decomposition to CO sub(2) for C from -CH sub(3) decreased more strongly than for C from -COOH. We conclude that the application of position-specifically labeled substances opens new ways to investigate not only the general fluxes, but also transformations of individual C atoms from molecules. This, in turn, allows conclusions to be drawn about the steps of individual transformation processes on the submolecular level and the rates of these processes.
机译:以前许多关于土壤中低分子量有机物(LMWOS)转化的研究都是基于使用super(14)C和/或super(13)C标记的物质。几乎所有这些研究都使用统一标记的物质,即分子中所有C原子都被标记了。基本前提是LMWOS转化涉及整个分子,因此不可能在以下两者之间进行区分:1)池之间分子整体的通量(即微生物生物量,CO sub(2),DOM,SOM等)和2)将物质分解为代谢物,并在池中追踪这些代谢物。基于位置特定的super(14)C标记,我们引入了一种研究土壤中LMWOS转化的新方法:在第1个位置(羧基,-COOH)或在第一个位置使用带有super(14)C标记的乙酸钠在第二位(甲基,-CH sub(3)),我们评估了土壤基质的吸附,分解为CO sub(2)以及微生物吸收与乙酸酯中两个C原子的相关性。我们表明乙酸盐的吸附是作为一个整体发生的。但是,微生物吸收后,乙酸盐会分解,并且-COOH基团中的C比-CH sub(3)基团中的C更完全,更快地转化为CO sub(2)。相应地,与来自-COOH基团的C相比,来自乙酸根-CH sub(3)基团的C主要掺入微生物细胞。因此,独立地计算了乙酸盐中两个位置上微生物对C的利用率。在浓度为10μmol l super(-1)的情况下,两个C原子从土壤溶液中吸收的微生物非常快(半衰期约3分钟)。在浓度<100μmol l super(-1)时,两组碳原子对CO sub(2)的氧化作用相似(约占添加物质的55%)。但是,在醋酸盐浓度> 100μmoll super(-1)时,C从-CH sub(3)分解成CO sub(2)的分解比从-COOH中分解为C的分解更强烈。我们得出的结论是,特定位置标记的物质的应用开辟了新的方法,不仅可以研究一般通量,而且还可以研究分子中单个C原子的转化。反过来,这使得可以得出关于单个转化过程在亚分子水平上的步骤以及这些过程的速率的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号