...
首页> 外文期刊>SAE International Journal of Aerospace >Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing
【24h】

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

机译:火星科学实验室用于热控制的机械泵送流体回路-设计,实施和测试

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload. During warm conditions, the same HRS works in reverse to pick up the heat dissipated by the rover electronics and payloads and reject it to the Martian environment via radiators. The large heat capacity of the flowing fluid in the HRS also serves to create a nearly isothermal interface temperature for the components controlled by the HRS. During cruise to Mars, the thermal management of the MMRTG waste heat is also a big challenge. A second mechanically pumped fluid loop is used to pick up the MMRTG waste heat and transport it to large radiators on the cruise stage. Both the HRS fluid loops use CFC-11 (Freon) as the working fluid. Both of these HRS fluid loops pose significant technical challenges in terms of their design, qualification and implementation. The spacecraft and rover are currently going through final testing. The design and implementation of the two HRS fluid loops have been completed during the last three years and the testing of the spacecraft is in progress. This paper describes the HRS design developed to overcome the technical challenges posed by the MSL mission and the results of the tests performed to characterize them. This paper builds on the paper presented at the 2005 International Conference on Environmental Systems in Rome that dealt primarily with the architecture of the HRS for MSL.
机译:火星科学实验室(MSL)的任务是准备在2011年发射大型火星车。火星车上的多任务放射性同位素热电发电机(MMRTG)提供110 W的电能,用于火星车和火星车科学有效载荷。与太阳能电池板不同,MMRTG在所有季节(全年)和纬度的白天和晚上都提供恒定的电力。 MMRTG会散发约2000 W的废热,以产生所需的电能。 MSL Rover的挑战之一是对大量MMRTG余热的热管理。在火星表面进行操作时,可以利用这种热量在夜间和冬季将流动站和科学有效载荷保持在允许的范围内,而无需使用电子救生加热器。机械泵送的流体回路排热和回收系统(HRS)用于拾取部分废热,并将其提供给流动站和有效载荷。在温暖的条件下,同一HRS反向工作,以吸收流动站电子设备和有效负载散发的热量,并将其通过散热器散发到火星环境中。 HRS中流动流体的大热容量还可以为受HRS控制的组件产生几乎等温的界面温度。在飞往火星的过程中,MMRTG余热的热管理也是一个巨大的挑战。第二个机械泵送流体回路用于拾取MMRTG废热并将其传输到巡航平台上的大型散热器。两个HRS流体回路均使用CFC-11(氟利昂)作为工作流体。这两种HRS流体回路在设计,鉴定和实施方面均构成重大的技术挑战。该航天器和流动站目前正在接受最终测试。这两个HRS流体回路的设计和实施已在过去三年中完成,航天器的测试正在进行中。本文介绍了为克服MSL任务带来的技术挑战而开发的HRS设计,以及为表征它们而进行的测试的结果。本文基于在2005年罗马国际环境系统会议上提交的论文,该论文主要涉及MSL的HRS的体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号