首页> 外文期刊>Neues Jahrbuch fur Mineralogie, Abhandlungen >Variation of color, structure and morphology of fluorite and the origin of the hydrothermal F-Ba deposits at Nabburg-Woisendorf, SE Germany
【24h】

Variation of color, structure and morphology of fluorite and the origin of the hydrothermal F-Ba deposits at Nabburg-Woisendorf, SE Germany

机译:萤火虫的颜色,结构和形态的变化以及德国纳布堡-沃森多夫的热液F-Ba矿床的成因

获取原文
获取原文并翻译 | 示例
           

摘要

The Nabburg-Wolsendorf mining district is located at the boundary between the crystalline basement and the Mesozoic-Cenozoic foreland basin in SE Germany. The hydrothermal mineralization is renowned for its great variety of colors of fluorite (blue, black to dark purple, green, white to colorless, yellow to brownish yellow) and its extraordinary diversity of crystal morphol-ogy of fluorite (three temperature-controlled sequences: (1) octahedron-rhombohedron-hexahedron, (2) octahedron-hexahedron, (3) tetrakishexahedron-hexahedron). These colorful and morphologically different fluorites are encountered in seven structural types of fluorite mineralization controlled in their outward appearance by the viscosity of the mineralizing fluids (I: cleft-and-fissure ore, II: brecciated vein ore, III: fitting-breccia ore, IV: rotational-breccia ore, V: cockade ore, VI: layered/ striated ore, VII: impregnation and cement ore). Fluorite mineralization resulted from two hydraulically different processes. Type I through type III — vein mineralization have been explained by the low-viscosity or aquatic fluid model. The structural types IV through VII can only be explained by a high-viscosity or drill-fluid model with a maximum of fluid rock interaction below the paleowater level related to the Late-Variscan unconformity. Bivalent (Ca) cations are gradually substituted for by trivalent (Fe, Y) and even tetravalent (REE) cations with striking consequences for the fluorite coloration and the viscosity of the mineralizing fluid (blue- black to dark purple fluorites are replaced by the green, white to colorless and yellow to brownish yellow fluorites along with an increase in viscosity and structural change towards cockade and stripped fluorite ore). The fetid fluorite is a blue fluorite which suffered from radiation damage and thereby acts as a marker of the radioactive hot spot in the mineralizing district. The crystal morphology and structural type of fluorite veins are controlled by the temperature (100 ℃ and 200 ℃), the depth relative to the unconformity and the position of fluorite mineralization within the paleohydraulic regime.
机译:纳堡(Nabburg-Wolsendorf)矿区位于德国东南部晶体基底与中,新生代前陆盆地之间的边界。水热矿化以萤石的多种颜色(蓝色,黑色至深紫色,绿色,白色至无色,黄色至棕黄色)和萤石的结晶形态特征非同寻常(三种温度控制序列)而闻名。 (1)八面体-菱面体-六面体,(2)八面体-六面体,(3)四六面体-六面体)。这些七彩和形态不同的萤石遇到了七种萤石矿化结构类型,这些萤石矿化的外观受矿化液的粘度控制(I:left裂矿,II:角砾岩矿,III:角砾岩矿, IV:角砾岩矿石,V:金银花矿石,VI:层状/条纹状矿石,VII:浸渍和水泥矿石。萤石矿化是由两个水力不同的过程导致的。低粘度或水生流体模型已解释了I型至III型-静脉矿化。 IV型至VII型结构只能用高粘度模型或钻井液模型来解释,在与晚Varisscan不整合有关的古水位以下,流体岩石相互作用最大。二价(Ca)阳离子逐渐被三价(Fe,Y)甚至四价(REE)阳离子取代,对萤石的着色和矿化液的粘度产生显着影响(蓝黑色至深紫色的萤石被绿色代替,白色至无色,黄色至棕黄色萤石,以及粘度增加和朝向帽徽和剥落的萤石矿石的结构变化)。陨石萤石是一种蓝色萤石,它受到辐射破坏,因此成为矿化区放射性热点的标志。萤石脉的晶体形态和结构类型受温度(100℃和200℃),相对于不整合面的深度以及萤石在液化过程中的位置的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号