首页> 外文期刊>Modelling and simulation in materials science and engineering >A discrete dislocation analysis of strengthening in bilayer thin films
【24h】

A discrete dislocation analysis of strengthening in bilayer thin films

机译:双层薄膜中强化的离散位错分析

获取原文
获取原文并翻译 | 示例
           

摘要

A two-dimensional (2D) discrete dislocation plasticity framework, which incorporates some three-dimensional mechanisms through constitutive additions, is used to analyse the response to uniaxial tension of nanoscale bilayer thin films. Frank-Read sources, modelled as junction dipoles in 2D, act as sources of dislocations. Infinite, homogeneous medium fields of the discrete dislocations are superposed with a non-singular complementary field that enforces the boundary conditions and accounts for image stresses arising from the difference in elastic properties between the layers. The resulting boundary value problem is solved using the finite element method. Analysis has been carried out for fully coherent bilayer Al/Cu and Cu/Ni films oriented for double slip. The analysis accounts for the effects of three key mechanisms: resistance to dislocation nucleation and motion due to elastic modulus mismatch (e.g. Koehler barrier); single-dislocation bow-out within layers (Orowan process) and slip blocking at interfaces (Hall-Petch mechanism). The relative importance of each mechanism is studied as a function of the bilayer thickness. The results indicate a significant strengthening with decreasing bilayer thickness. Conclusions are drawn regarding the possible causes of the observed strengthening.
机译:二维(2D)离散位错可塑性框架,其中包括通过构成性添加的一些三维机制,用于分析纳米级双层薄膜对单轴张力的响应。在二维中建模为结偶极子的Frank-Read源充当位错源。离散位错的无限均质介质场与非奇异互补场叠加,该非奇异互补场强制边界条件并解决由层之间的弹性特性差异引起的图像应力。使用有限元方法解决了由此产生的边值问题。已经对定向为双重滑移的全粘结双层Al / Cu和Cu / Ni薄膜进行了分析。该分析说明了三个关键机制的影响:抵抗位错成核和由于弹性模量不匹配(例如Koehler势垒)而引起的运动;层内的单位错位拱出(Orowan过程)和界面处的滑移阻塞(Hall-Petch机制)。研究每种机理的相对重要性,作为双层厚度的函数。结果表明随着双层厚度的减小,显着增强。关于观察到的强化的可能原因得出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号