...
首页> 外文期刊>Geology >Determining gypsum growth temperatures using monophase fluid inclusions-Application to the giant gypsum crystals of Naica, Mexico
【24h】

Determining gypsum growth temperatures using monophase fluid inclusions-Application to the giant gypsum crystals of Naica, Mexico

机译:使用单相流体夹杂物测定石膏的生长温度-在墨西哥奈卡的巨型石膏晶体中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, Th. In this study we evaluate the applicability of Th data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 °C and 80 °C under atmospheric pressure conditions. We found an asymmetric distribution of the Th values, which are systematically lower than the actual crystal growth temperatures, Tg; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 ± 1.5 °C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 ± 2 °C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.
机译:使用流体包裹体确定矿物的形成温度是理解岩石形成情况的关键步骤。不幸的是,在低温下形成的矿物质(例如石膏)中的流体包裹体通常处于亚稳态单相液态。为了克服这个问题,可以使用超短激光脉冲来诱导汽泡成核,从而形成稳定的两相流体夹杂物,适合随后测量液-汽均质化温度Th。在这项研究中,我们评估了Th数据在准确确定石膏形成温度方面的适用性。我们在实验室环境中在40°C至80°C的不同温度下,大气压条件下生长的合成石膏晶体中使用了流体包裹体。我们发现Th值的不对称分布,有系统地低于实际晶体生长温度Tg;这是由于(1)表面张力对液体-蒸汽均质化的影响,以及(2)夹杂物壁的塑性变形,这是由于在夹杂物的亚稳态下产生的内部拉应力引起的。基于此了解,我们确定了来自Naica(墨西哥)的天然巨型石膏晶体的生长温度,对于生长在剑洞(地表以下120 m)中的晶体,晶体的生长温度为47±1.5°C,对于巨型晶体,其晶体的生长温度为54.5±2°C生长在晶体洞穴(地下290 m)中。这些结果支持了较早的假设,即Naica晶体的数量和大小受温度控制。此外,该实验方法为确定低温环境中形成的矿物的生长温度打开了一扇门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号