...
首页> 外文期刊>Antiviral chemistry & chemotherapy >Mechanism of antiviral activities of 3'-substituted L-nucleosides against 3TC-resistant HBV polymerase: a molecular modelling approach.
【24h】

Mechanism of antiviral activities of 3'-substituted L-nucleosides against 3TC-resistant HBV polymerase: a molecular modelling approach.

机译:3'取代的L-核苷抗3TC抗性HBV聚合酶抗病毒活性的机制:分子建模方法。

获取原文
获取原文并翻译 | 示例
           

摘要

Comparison of the active sites of the human HIV-1 reverse transcriptase (RT) and the homology-modelled hepatitis B virus (HBV) polymerase shows that the active sites of both enzymes are open to L-nucleosides, but the position where the 3'-substituent of the L-ribose projects in HBV polymerase is wider and deeper than HIV-1 RT, which enables the HBV polymerase to accommodate various 3'-substituted L-nucleosides. However, the space is not sufficient to accommodate a bulky 3'-substituent such as the 3'-azido group of L-3'-azido-3'-deoxythymidine. Analysis of the minimized structure of rtM204V HBV polymerase/3TCTP complex shows that, instead of the steric stress produced by rtV204, a loss of the van der Waals contact around the oxathiolane sugar moiety of 3TCTP caused by the mutation results in the disruption of the active site. Therefore, nucleosides, which are stabilized by additional specific interaction with the enzyme residues, can have more opportunities to circumvent the destabilization by the loss of hydrophobic interaction conferred by mutation. Specifically, the substitution at the 3'-position would be beneficial as the HBV polymerase has wide open space composed of the highly conserved motif (YMDD) where the 3'-substituents of the L-nucleosides project. As an example, our study shows that the 3'-fluorine atom contributes to the antiviral activity of L-3'-Fd4CTP against rtM204V HBV polymerase by readily compensating for the loss of the van der Waals interaction around the 2',3'-double bond through a formation of a hydrogen bond to the amide backbone of rtD205.
机译:人类HIV-1逆转录酶(RT)和同源性模型乙型肝炎病毒(HBV)聚合酶的活性位点比较表明,两种酶的活性位点均向L-核苷开放,但3'端的位置HBV聚合酶中L-核糖项目的β-取代基比HIV-1 RT更宽和更深,这使得HBV聚合酶能够容纳各种3'-取代的L-核苷。但是,该空间不足以容纳庞大的3'-取代基,例如L-3'-叠氮基-3'-脱氧胸苷的3'-叠氮基。对rtM204V HBV聚合酶/ 3TCTP复合物的最小结构的分析表明,取代rtV204产生的空间应力,由突变引起的3TCTP的氧杂硫杂环戊烷糖部分周围的范德华接触损失导致活性物质的破坏。现场。因此,通过与酶残基的额外特异性相互作用而被稳定的核苷,将具有更多的机会来避免由于突变而导致的疏水性相互作用的丧失,从而破坏去稳定作用。具体而言,在3'位置的取代将是有益的,因为HBV聚合酶具有宽阔的开放空间,由L-核苷的3'取代基突出的高度保守的基序(YMDD)组成。例如,我们的研究表明3'-氟原子通过容易地补偿了2',3'-周围范德华相互作用的损失,有助于L-3'-Fd4CTP对rtM204V HBV聚合酶的抗病毒活性。通过与rtD205的酰胺主链形成氢键形成双键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号