首页> 外文期刊>ACS applied materials & interfaces >Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices
【24h】

Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices

机译:在植入装置上通过大气等离子射流进行纳米高,表面化学和药物递送控制

获取原文
获取原文并翻译 | 示例
           

摘要

Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (similar to 60 nm to 2 mu m), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic-co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm.s(-1) at temperatures lower than 50 degrees C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.
机译:植入装置需要特定的定制表面形态和化学物质来与生命系统相互作用,或者通过释放药物或蛋白质也积极诱导生物反应。这些定制要求促进可以在添加制造系统中实施的技术。在这里,我们提出了一种基于喷涂过程的新方法,其允许在亚微米范围(类似于60nm至2μm),氨或羧基化学中的单独地形特征,即使在温度敏感的可生物降解的聚合物上,荧光团释放也是如此聚己内酯(PCL)。我们开发了一种双步骤,通过气溶胶的第一沉积220nm二氧化硅和聚(乳酸 - 共乙酰胺)(PLGA)荧光纳米粒子,然后通过大气压等离子体喷射(APPJ)沉积固定层。纳米颗粒可用于产生纳米应激并包括活性分子释放,而封端层确保稳定性和化学官能团。该过程由新的APPJ使能,其使用氩气作为过程气体在50摄氏度低于50摄氏度的温度下沉积10-20nm.S(-1)的沉积速率。在牙科植入物和PCL薄膜上评估这种方法。表面的特征在于傅里叶变换红外,原子力显微镜和扫描电子显微镜(SEM)。用预血红素细胞系测试钛合金,用成纤维细胞测试PCL薄膜。通过活性和粘合测定,蛋白质吸附,细胞增殖,局灶性粘附形成和SEM评估细胞行为。在细胞生长培养基中评估荧光团分子的释放,模拟药物释放。相对于商业钛合金植入物,等离子体处理材料上的成骨细胞粘附增加了20%。与光滑的PCL衬底相比,成纤维细胞粘附增加100%。通过PLGA纳米颗粒的溶解释放荧光团的释放,确认了包封的药物模型的完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号