首页> 外文期刊>Chemical engineering journal >Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors
【24h】

Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors

机译:可调谐TiO2 / RuO2混合复合材料的燃烧驱动的合成途径作为超级电容器的高性能电极材料

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrids of micro/nanostructured metals/metal oxides have great potential to provide high performance in electrochemical applications such as supercapacitors. However, their synthesis routes involve complex procedures that limit scalable fabrication. Herein, we report a combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Self-propagating combustion waves passing through precursors consisting of TiO2 nanoparticles and combustible nitrocellulose directly fabricated carbon templates as sacrificial layers for the outermost functional metal oxides, while the initial mass loading of nitrocellulose manipulated the residual hybrids. Through substituting the pre-formed carbon templates with RuO2, tunable TiO2/RuO2 hybrid composites of core-shell TiO2@RuO2 nanostructures or RuO2 clusters with embedded TiO2 nanoparticles were selectively obtained. The developed hybrids exhibited outstanding specific capacitances (similar to 1200 F/g at 0.5 A/g) and capacitance retentions (similar to 95.2% after 10,000 cycles) as supercapacitor electrodes, whereas the commercial RuO2-based electrode showed a lower specific capacitance (similar to 600 F/g) and faster degradation of stability (similar to 72%). An optimal thickness of hydrous RuO2 could facilitate inter-diffusion and proton transport for the high specific capacitances, while the amorphous nature of the outermost RuO2 and the inner TiO2 stability could provide robustness against the harsh stresses during charge-discharge cycles. This work can provide new strategies for the scalable fabrication of hybridized metal oxides such as core-shell nanostructures and nanoclusters, which would be useful for electrochemical devices, catalysts, and electromagnetic shielding.
机译:微/纳米结构金属/金属氧化物的杂交物具有很大的潜力,可在超级电容器等电化学应用中提供高性能。然而,它们的合成路线涉及限制可扩展制造的复杂程序。在此,我们报告了可调谐TiO2 / RuO2混合复合材料的燃烧驱动的合成途径,作为超级电容器的高性能电极材料。通过由TiO 2纳米颗粒和可燃硝化纤维素组成的前体的自蔓延燃烧波,可燃硝化纤维素直接制造碳模板作为最外官能金属氧化物的牺牲层,而硝酸纤维素的初始质量负荷操纵残余杂种。通过用RuO2用RuO2代替预形成的碳模板,选择性地获得核 - 壳TiO 2的可调谐TiO2 / RuO2杂化复合材料或具有嵌入式TiO2纳米颗粒的Ruo2纳米结构或Ruo2簇。开发的混合动力车表现出卓越的特定电容(类似于1200 f / g以0.5 a / g),电容保持(类似于10,000个循环后的95.2%)作为超级电容器电极,而商业Ruo2基电极显示出较低的特定电容(类似至600 f / g)和更快地降解稳定性(类似于72%)。恒定的RuO2的最佳厚度可以促进用于高比电容的扩散和质子传输,而最外面的RuO2和内部TiO 2稳定性的无定形性质可以在充放电循环期间对苛刻应力提供鲁棒性。该作品可以为杂交金属氧化物的可伸缩制造如核 - 壳纳米结构和纳米能器提供新的策略,这对于电化学装置,催化剂和电磁屏蔽是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号