...
首页> 外文期刊>Amino acids >Mechanism of cysteine-dependent inactivation of aspartate/ glutamate/cysteine sulfinic acid α-decarboxylases
【24h】

Mechanism of cysteine-dependent inactivation of aspartate/ glutamate/cysteine sulfinic acid α-decarboxylases

机译:天冬氨酸/谷氨酸/半胱氨酸亚磺酸α-脱羧酶半胱氨酸依赖性失活的机理

获取原文
获取原文并翻译 | 示例
           

摘要

Animal aspartate decarboxylase (ADC), gluta-mate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldim-ine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.
机译:动物天冬氨酸脱羧酶(ADC),谷氨酸脱羧酶(GDC)和半胱氨酸亚磺酸脱羧酶(CSADC)分别催化天冬氨酸,谷氨酸和半胱氨酸亚磺酸脱羧成β-丙氨酸,γ-氨基丁酸和次牛磺酸。每种酶产物都涉及不同的生理功能。这些脱羧酶使用5-磷酸吡x醛(PLP)作为辅因子,并具有较高的序列同源性。在存在不同氨基的情况下对ADC活性的分析确定,在半胱氨酸存在的情况下,天冬氨酸的β-丙氨酸产量减少了。比较分析证实,半胱氨酸也以浓度依赖性方式抑制GDC和CSADC。游离PLP和半胱氨酸以及ADC和半胱氨酸的光谱比较导致可比的光谱偏移。这样的光谱偏移表明半胱氨酸能够进入酶的活性位点,与PLP-赖氨酸内部的亚胺相互作用,形成半胱氨酸-PLP的醛亚胺,并通过其巯基进行分子内亲核环化反应,从而导致ADC不可逆失活。半胱氨酸是蛋白质合成的基石,是半胱氨酸亚磺酸的前体,它是CSADC的底物,因此存在于许多细胞中,但是半胱氨酸的存在(与天然底物相当的浓度)显然会严重抑制ADC,CSADC和GDC活动。这就提出了一个重要的问题,即动物物种如何阻止这些酶半胱氨酸介导的失活。半胱氨酸代谢异常与几种神经退行性疾病有关。我们的研究结果应促进动物维持半胱氨酸稳态的机制以及在神经退行性疾病发展中半胱氨酸介导的GDC和CSADC抑制的可能关系方面的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号