首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Uncertainty quantification for constitutive model calibration of brain tissue
【24h】

Uncertainty quantification for constitutive model calibration of brain tissue

机译:脑组织本构模型校准的不确定性定量

获取原文
获取原文并翻译 | 示例
       

摘要

The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources.
机译:提出了一种研究模型校准技术的研究结果,其介绍了描述了描述脑组织的高速行为的ogden的组成型模型。一个和双术ogden模型适合使用两个不同方格优化和贝叶斯估计的脑组织的两组不同的应力 - 应变实验数据。对于贝叶斯估计,通过采用Hamiltonian Monte Carlo(HMC)采样来计算本构参数的关节后部分布,这是一种Markov链蒙特卡罗方法。通过制定非线性参数约束函数,在这项工作中富有富集的HMC方法,以确保本构模型产生物理有意义的结果。通过应用嵌套采样技术,识别了95%的结构型参数上的置信度界限,然后通过本构体模型传播这些界限,以在应力 - 应变响应上产生所得界限。广泛评估模型校准程序的行为和实验数据的特性的效果。结果证明,增加模型复杂性(即,在OGDDED模型中添加额外术语)提高了最佳拟合参数集的准确性,同时还通过扩大校准参数的置信度的增长来增加不确定性。尽管两种数据集之间存在一些相似性,但是产生的分布显着不同,突出显示校准程序对数据特性的灵敏度。例如,在实验数据上报道的不确定性的量在校准期间如何加权数据点,并且这显着影响了在组合从不同源的实验数据集时校准参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号