...
首页> 外文期刊>Journal of Semiconductors >Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices
【24h】

Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices

机译:关于2D材料相关的物理性质和光电器件的特殊问题

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in two-dimensional (2D) materials following the successful fabrication of graphene in 2004 by Novoselov and Geim is expected to grow into the new silicon, offering a lifeline for Moore's law. With the rapid development of the synthesis methods, more and more 2D materials, such as transition metal dichalcogenides (TMDs, MX2), black phosphorus (BP) and InSe with a finite gap are reported to be more promising for achieving this dream since they often offer alternative solutions to compensate for the gapless graphene's weaknesses. 2D materials are single or few-layer thick, in which the atoms in a single layer connect with the strong covalent bonds while the adjacent layers are bonded via weak van der Waals (vdW) interactions. The ultrathin thickness and high mobility of 2D materials have opened new pathways for materials with just one-atom thickness to be used in the post-silicon electronic era. Furthermore, the electrons in 2D materials are almost confined in a 2D plane, leading to massless carriers, strong excitonic effects and valley polarization. In addition, some 2D materials, such as BP and ReS(Se)2, exhibit strong inplane anisotropy, offering a new degree of freedom to deliver various physical properties compared with the isotropic 2D materials. Any two or more 2D materials with similar properties can be alloyed into a new layered material, namely, 2D alloy. More interestingly, the combination of these emergent 2D materials with rich properties paves way for fabricating vdW heterostructures. The electronic and optoelectronic performances in the vdW heterostructures can be enhanced and tuned by applying gate voltages, which may provide a fundamental platform to realize novel physical phenomena and device applications. Although many scientists are still devoted to finding the superior 2D semiconductors for nanoelectronic industry, we believe that they can find their place in the post-silicon electronics based on the great achievements made.
机译:在NovoseLov和Geim在2004年成功制造石墨烯之后的二维(2D)材料的最新进展预计将进入新硅,为Moore的法律提供生命线。随着合成方法的快速发展,据报道,越来越多的2D材料,例如过渡金属二甲硅藻(TMDS,MX2),黑磷(BP)和有限差距的内侧,以便更有希望以获得这种梦想提供替代解决方案,以补偿无效石墨烯的弱点。 2D材料是单层或少数层,其中单层中的原子与强共价键连接,同时相邻的层通过弱范德瓦尔斯(VDW)相互作用键合。 2D材料的超薄厚度和高迁移率开启了具有仅在硅电子电子时代的单原子厚度的材料的新途径。此外,2D材料中的电子几乎限制在2D平面中,导致无麻携带者,强烈的兴趣效果和谷极化。此外,一些2D材料,如BP和RES(SE)2,具有强烈的浸入件各向异性,与各向同性2D材料相比,提供了一种新的自由度来提供各种物理性质。具有相似性质的任何两个或更多个2D材料可以合金化成新的层状材料,即2D合金。更有趣的是,这些紧急2D材料的组合具有丰富的性能,为制造VDW异质结构铺平了方法。通过施加栅极电压可以增强和调谐VDW异质结构中的电子和光电性能,这可以提供基本平台来实现新颖的物理现象和设备应用。虽然许多科学家仍然致力于寻找用于纳米电子行业的高级2D半导体,但我们认为他们可以基于伟大的成就,在硅后电子设备中找到他们的位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号