...
首页> 外文期刊>Biotechnology and Bioengineering >Genome-Scale Metabolic Modeling and In Silico Analysis of Lipid Accumulating Yeast Candida tropicalis for Dicarboxylic Acid Production
【24h】

Genome-Scale Metabolic Modeling and In Silico Analysis of Lipid Accumulating Yeast Candida tropicalis for Dicarboxylic Acid Production

机译:基因组规模的代谢建模和脂质积累酵母假丝酵母生产二羧酸的计算机模拟分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, the bio-production of alpha,omega-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique v-oxidation pathway where the terminal carbon of a-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the v-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. (C) 2016 Wiley Periodicals, Inc.
机译:近来,α,ω-二羧酸(DCA)的生物生产备受关注,这有可能导致传统石油基产品的替代。在这方面,脂质积累酵母热带假丝酵母已被公认为是DCA生物合成的有希望的微生物宿主:它具有独特的v-氧化途径,其中α-脂肪酸的末端碳被氧化形成链长不同的DCA。然而,尽管具有如此工业上的重要性,其细胞生理学和脂质蓄积能力仍未表征。因此,必须更好地了解这种脂肪酵母的代谢行为,这可以通过系统生物学方法来实现。为此,在本文中,我们重建了热带假丝酵母的基因组规模代谢模型iCT646,该模型解释了646个独特基因,945个代谢反应和712个代谢产物。最初,iCT646与其他酵母菌的比较网络分析显示了几个独特的代谢反应,主要在氨基酸和脂质代谢(包括v-氧化途径)内。然后,基于约束的通量分析被用来预测热带假丝酵母的计算机生长速率,其与在葡萄糖和木糖基本培养基化学恒温培养物中观察到的细胞表型高度一致。随后,与酿酒酵母相比,探索了热带假丝酵母的脂质蓄积能力,这表明“柠檬酸丙酮酸循环”的形成对于油质酵母中的脂质蓄积至关重要。硅通量分析还突出了脂肪形成过程中磷酸戊糖途径作为NADPH来源而不是苹果酸酶的能力增强。最后,iCT646被成功地用于突出热带假单胞菌菌株设计的关键方向,以用于全细胞生物转化应用以从烷烃生产长链DCA。 (C)2016威利期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号