...
首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin-Alginate Constructs
【24h】

A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin-Alginate Constructs

机译:用于量化多维生物制版明胶 - 藻酸盐构建体中细胞密度和分布的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Bioprinted tissue constructs can be produced by microextrusion-based materials processing or coprinting of cells and hydrogel materials. In this paper, a gelatin alginate hydro gel material formulation is implemented as the bio-ink toward a three-dimensional (3D) cell-laden tissue construct. However, of fundamental importance during the printing process is the interplay between the various parameters that yield the final cell distribution and cell density at different dimensional scales. To investigate these effects, this study advances a multidimensional analytical framework to determine both the spatial variations and temporal evolution of cell distribution and cell density within a bioprinted cell laden construct. In the one-dimensional (1D) analysis, the cell distribution and single printed fiber shape in the circular cross-sectional view are observed to be dependent on the process temperature and material concentration parameters, along with the initial bio-ink cell densities. This is illustrated by reliable fabrication verified by image line profile analyses of structural fiber prints. Round fiber prints with width 809.5 +/- 523 mu m maintain dispersive cells with a degree of dispersion (D-d) at 96.8 +/- 6.27% that can be achieved at high relative material viscosities under low temperature conditions (21 degrees C) or high material concentrations (10% w/v gelatin). On the other hand, flat fiber prints with width 1102.2 +/- 63.66 mu m coalesce cells toward the fiber midline with D-d = 76.3 +/- 4.58% that can be fabricated at low relative material viscosities under high temperature (24 degrees C) or low material concentrations (7.5% w/v gelatin). A gradual decrement of D-d (from 80.34% to 52.05%) is observed to be a function of increased initial bio-ink cell densities (1.15 x 10(6)-16.0 x 10(6) cells/ml). In the two-dimensional (2D) analysis, a printed grid structure yields differential cell distribution, whereby differences in localized cell densities are observed between the strut and cross regions within the printed structure. At low relative viscosities, cells aggregate at the cross regions where two overlapping filaments fuse together, yielding a cell density ratio of 2.06 +/- 0.44 between the cross region and the strut region. However, at high relative viscosities, the cell density ratio decreases to 0.96 +/- 0.03. In the 3D analysis, the cell density attributed to the different layers is studied as a function of printing time elapsed from the initial bio-ink formulation. Due to identifiable cell sedimentation, the dynamics of cell distribution within the original bio-ink cartridge or material reservoir yield initial quantitative increases in the cell density for the first several printed layers, followed by quantitative decreases in the subsequent printed layers. Finally, during incubation, the evolution of cell density and the emergence of mate-rial degradation effects are studied in a time course study. Variable initial cell densities (0.6 x 10(6) cells/mL, 1.0 x 10(6) cells/mL, and acellular control group) printed and cross linked into cell-laden constructs for a 48 h time course study exhibit a time-dependent increase in cell density owing to proliferation within the constructs that are presumed to affect the rate of bin-ink material degradation.
机译:Bioplinted组织构建体可以通过基于微饲料的材料加工或细胞和水凝胶材料的泛凝制备。在本文中,将明胶藻酸盐水凝胶材料制剂作为朝向三维(3D)细胞 - 升起组织构建体的生物墨水。然而,在印刷过程中的基本重要性是各种参数之间的相互作用,其在不同维度尺度下产生最终的细胞分布和细胞密度。为了调查这些效果,该研究进展了多维分析框架,以确定生物印刷细胞载荷构建体内细胞分布和细胞密度的空间变化和时间演变。在一维(1D)分析中,观察到圆形横截面图中的细胞分布和单印刷纤维形状,以取决于工艺温度和材料浓度参数,以及初始生物墨水细胞密度。这是通过结构光纤印刷的图像线轮廓分析来验证的可靠制造来说明。宽度809.5 +/-523μm的圆形纤维印刷,可在96.8 +/- 6.27%处维持具有分散体(DD)的分散细胞,其可以在低温条件下的高相对材料粘度下实现(21℃)或高物质浓度(10%w / v明胶)。另一方面,宽度1102.2 +/- 63.66 mu m的扁平纤维朝向纤维中线,具有Dd = 76.3 +/- 4.58%,可在高温(24℃)的低相对材料粘度下制造低材料浓度(7.5%w / v明胶)。 D-D的逐渐减量(从80.34%到52.05%)被观察到是初始生物墨水细胞密度增加的函数(1.15×10(6)-16.0×10(6)个细胞/ ml)。在二维(2D)分析中,印刷网格结构产生差分细胞分布,由此在印刷结构内的支柱和交叉区域之间观察到局部细胞密度的差异。在低相对粘度下,细胞聚集在横区域,其中两个重叠长丝熔合在一起,在横区域和支柱区域之间产生2.06 +/- 0.44的细胞密度比。然而,在高相对粘度下,细胞密度比降低至0.96 +/- 0.03。在3D分析中,研究了归因于不同层的电池密度作为从初始生物墨水制剂经过的打印时间的函数。由于可识别的细胞沉降,原始生物墨盒或材料储存器内的细胞分布的动态产生初始定量增加了第一几个印刷层的电池密度,然后定量降低了随后的印刷层。最后,在孵育期间,在时间课程研究中研究了细胞密度的演变和伴游降解效应的出现。可变初始细胞密度(0.6×10(6)个细胞/ ml,1.0×10(6)个细胞/ ml,和细胞对照组)印刷和交叉连接到细胞 - 载荷构建体中,为48小时的课程研究表现出由于构建体内的增殖而依赖性增加,以影响箱油墨材料降解的速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号