首页> 外文会议>ASME international manufacturing science and engineering conference >A METHODOLOGY FOR QUANTIFYING CELL DENSITY AND DISTRIBUTION IN MULTIDIMENSIONAL BIOPRINTED GELATIN-ALGINATE CONSTRUCTS
【24h】

A METHODOLOGY FOR QUANTIFYING CELL DENSITY AND DISTRIBUTION IN MULTIDIMENSIONAL BIOPRINTED GELATIN-ALGINATE CONSTRUCTS

机译:多维二元明胶明胶-藻酸盐结构中细胞密度和分布定量的方法

获取原文

摘要

Bioprinted tissue constructs are enabled by microextrusion-based co-printing of cells and hydrogel materials. In this paper, a gelatin-alginate hydrogel material formulation is implemented as the bio-ink towards a 3D cell-laden tissue construct. However, of fundamental importance during the printing process is the interplay between the various parameters that yield the final cell distribution and cell density at different dimensional scales. To investigate these effects, this study advances a multidimensional analytical framework to determine the spatial variations and temporal evolution of cell distribution and cell density within a bioprinted cell-laden construct. In the one dimensional (1D) analysis, the cell distribution and cross-sectional shape for a single printed fiber are observed to be dependent on the process temperature and material concentration parameters. This is illustrated by the reliable fabrication and image line profile analysis of the fiber prints. Round fiber prints with a measured width of 809.5±52.3 μm maintain dispersive cells with a degree of dispersion (D_d) at 96.8 % that can be achieved at high relative material viscosities under low temperature conditions (21 °C) or high material concentrations (10 % w/v gelatin). On the other hand, flat fiber prints with a measured width of 1102.2 ±63.6 /an coalesce cells towards the fiber midline with D_d = 76.3% that can be fabricated at low relative material viscosities under high temperature (24 °C) or low material concentrations (7.5 % w/v gelatin). In the 2D analysis, a printed grid structure yields differential cell distribution whereby differences in localized cell densities are observed between the strut and cross regions within the printed structure. At low relative viscosities, cells aggregate at the cross regions where two overlapping filaments fuse together, yielding a cell density ratio of 2.06±0.44 between the cross region and strut region. However, at high relative viscosities, the cell density ratio decreases to 0.96±0.03. In the 3D analysis, the cell density attributed to the different layers is studied as a function of printing time elapsed from the initial bio-ink formulation. Due to identifiable gravity and extrusion process-induced effects, the cell distribution within the original bio-ink cartridge or material reservoir is altered over time to yield initial quantitative increases in the cell density over the first several printed layers, followed by quantitative decreases in the subsequent printed layers. Finally, in the time-dependent analysis, the evolution of cell density and the emergence of material degradation effects is studied over a time course study. Variable initial cell densities (0.6 x 106 cells/ml, 1.0 x 106 cells/ml, and acellular control group) printed and cross-linked into cell-laden constructs for the 48 hr time course study exhibit a time-dependent increase in cell density owing to proliferation within the constructs that are presumed to accelerate the degradation rate.
机译:通过基于微挤压的细胞和水凝胶材料的共印技术,可以进行生物打印的组织构建体。在本文中,将明胶-藻酸盐水凝胶材料配方实现为朝向3D细胞的组织构建体的生物墨水。然而,在印刷过程中,最重要的是各种参数之间的相互作用,这些参数会产生最终的单元分布和不同尺寸尺度下的单元密度。为了研究这些影响,这项研究提出了一个多维分析框架,以确定在生物印刷的载有细胞的构建物中细胞分布和细胞密度的空间变化和时间演变。在一维(1D)分析中,观察到单根打印纤维的孔分布和横截面形状取决于过程温度和材料浓度参数。纤维印花的可靠制造和图像线轮廓分析可以说明这一点。测量宽度为809.5±52.3μm的圆形纤维印花可将色散度(D_d)保持在96.8%的色散单元,可以在低温条件(21°C)或高材料浓度(10下)的高相对材料粘度下实现%w / v明胶)。另一方面,扁平纤维印花的测量宽度为1102.2±63.6 /个聚结单元,朝向纤维中线,D_d = 76.3%,可以在高温(24°C)或较低的材料粘度下以较低的相对材料粘度制作。 (7.5%w / v明胶)。在2D分析中,打印的网格结构产生微分的单元分布,从而在打印的结构内的支杆和交叉区域之间观察到局部单元密度的差异。在较低的相对粘度下,细胞在交叉区域聚集,两个重叠的细丝融合在一起,在交叉区域和支撑区域之间的细胞密度比率为2.06±0.44。然而,在高相对粘度下,泡孔密度比降低至0.96±0.03。在3D分析中,研究了归因于不同层的细胞密度与初始生物墨水配方所经过的印刷时间的关系。由于可识别的重力和挤压过程引起的影响,原始生物墨水盒或材料容器内的细胞分布会随时间而变化,从而在最初的几个印刷层上产生初始的定量细胞密度增加,然后定量降低。随后的印刷层。最后,在随时间变化的分析中,通过时间过程研究了细胞密度的演变和材料降解作用的出现。可变的初始细胞密度(0.6 x 106个细胞/ml、1.0 x 106个细胞/ ml和无细胞对照组)打印并交联到载有细胞的构建物中,进行48小时的时程研究,显示出细胞密度随时间的增加由于推测在构建物中的增殖会加速降解速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号