...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Quantifying Pore Width Effects on Diffusivity via a Novel 3D Stochastic Approach with Input from Atomistic Molecular Dynamics Simulations
【24h】

Quantifying Pore Width Effects on Diffusivity via a Novel 3D Stochastic Approach with Input from Atomistic Molecular Dynamics Simulations

机译:通过一种具有原子分子动力学模拟的进入的新型3D随机方法对孔宽度对扩散率的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The increased production of unconventional hydrocarbons emphasizes the need to understand the transport of fluids through narrow pores. Although it is well-known that confinement affects fluids structure and transport, it is not yet possible to quantitatively predict properties such as diffusivity as a function of pore width in the range of 1–50 nm. Such pores are commonly found not only in shale rocks but also in a wide range of engineering materials, including catalysts. We propose here a novel and computationally efficient methodology to obtain accurate diffusion coefficient predictions as a function of pore width for pores carved out of common materials, such as silica, alumina, magnesium oxide, calcite, and muscovite. We implement atomistic molecular dynamics (MD) simulations to quantify fluid structure and transport within 5 nm-wide pores, with particular focus on the diffusion coefficient within different pore regions. We then use these data as input to a bespoke stochastic kinetic Monte Carlo (KMC) model, developed to predict fluid transport in mesopores. The KMC model is used to extrapolate the fluid diffusivity for pores of increasing width. We validate the approach against atomistic MD simulation results obtained for wider pores. When applied to supercritical methane in slit-shaped pores, our methodology yields data within 10% of the atomistic simulation results, with significant savings in computational time. The proposed methodology, which combines the advantages of MD and KMC simulations, is used to generate a digital library for the diffusivity of gases as a function of pore chemistry and pore width and could be relevant for a number of applications, from the prediction of hydrocarbon transport in shale rocks to the optimization of catalysts, when surface-fluid interactions impact transport.
机译:加强碳氢化合物的增加强调需要通过狭窄的毛孔来理解流体的运输。虽然众所周知,限制影响流体结构和运输,但是可以定量地预测诸如偏差率的特性,例如孔宽度在1-50nm的范围内。这种孔通常不仅在页岩岩石中发现,而且在各种工程材料中,包括催化剂。我们在此提出一种新颖的和计算上有效的方法,以获得精确的扩散系数预测,以获得孔宽的孔宽的孔宽,例如二氧化硅,氧化铝,氧化镁,方解石和Muscovite。我们实施原子分子动力学(MD)模拟,以量化5 nm宽的孔隙内的流体结构和运输,特别侧重于不同孔区域内的扩散系数。然后,我们将这些数据作为输入到定制随机动力学蒙特卡罗(KMC)模型的输入,以预测中孔中的流体运输。 KMC模型用于外推的流体扩散率,以增加宽度的孔。我们验证了对更宽孔获得的原子MD仿真结果的方法。当施加到狭缝形孔隙中的超临界甲烷时,我们的方法在原子仿真结果的10%内产生数据,计算时间大大节省。结合MD和KMC模拟的优点的提议方法用于为孔化学和孔径的函数产生气体扩散性的数字文库,并且可以从烃的预测到许多应用相关当表面流体相互作用冲击运输时,在页岩岩石中运输到催化剂的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号