...
首页> 外文期刊>Materials Horizons >From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring
【24h】

From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring

机译:从纳米到毫米:一种能够实现等离子体的表面官能化和纳米结构的能力范围

获取原文
获取原文并翻译 | 示例
           

摘要

Driven by the innate tendency of the system to attain a local energy minimum, self-organization enables the creation of complex systems out of relatively simple parts and elements. The ability to form hierarchical, multicomponent systems that may be difficult, or even impossible, to fabricate using pre-set, template-enabled processes makes self-organisation very attractive for the synthesis and assembly of advanced material systems across multiple length scales. Yet, driving and controlling such self-organisation processes is not a trivial task as they often arise from a complex interplay of physical and chemical processes. These in turn depend on the environment in which self-organisation takes place. In this topical review, we focus on one such environment and outline unique opportunities, salient characteristics and challenges presented by self-organization on surfaces exposed to partially ionised gases, i.e. plasmas. Using a select number of recent examples, we aim to show how salient features of plasma environments, particularly high fluxes of energy and matter from the plasma to the surface, enable functionalization and growth of complex nanostructures and metamaterials via self-organization on plasma-exposed surfaces. We will show how by controlling different physical and chemical parameters of the plasma environment and how it interacts with surfaces, it is possible to control self-organization processes at multiple length scales, making it a promising enabling platform for nanosynthesis. We will discuss examples starting from the self-driven growth of perfect crystalline lattices, such as nano-diamonds and graphenes at the nanoscale, all the way to template- and pattern-free synthesis of large, highly ordered arrays of nanostructures at millimetre and even centimetre scales. We will outline the key enabling features of plasmas that drive these processes at respective scales, focusing predominantly on plasma-induced electric fields at the surface or in the plasma-nanostructure sheath, as well as charge-related effects. The outlook section summarizes advantages of plasma-driven self-organization, and outlines principal challenges and opportunities for the development of this field.
机译:由系统的先天倾向驱动,以获得最小的当地能源,自组织使得能够在相对简单的部件和元素中创建复杂系统。能够形成可能困难,甚至不可能的分层,多组分系统,以使用预先设置的模板的过程制造,使自组织对跨多个长度尺度的高级材料系统的合成和组装非常有吸引力。然而,驾驶和控制这样的自组织过程不是一种微不足道的任务,因为它们通常来自物理和化学过程的复杂相互作用。这些反过来依赖于自我组织发生的环境。在这个主题审查中,我们专注于一个这样的环境和概述独特的机会,自组织在暴露于部分电离气体的表面上呈现的突出特征和挑战,即等离子体。使用最近的实施例的选择数量,我们的目的是展示等离子体环境的显着特征,特别是从等离子体到表面的血浆物质,通过自组织曝光使复合纳米结构和超材料的功能化和生长能够表面。我们将展示如何通过控制等离子体环境的不同物理和化学参数以及如何与表面交互,可以在多个长度尺度下控制自组织过程,使其成为纳米合成的有希望的能够实现平台。我们将讨论从纳米级纳米金刚石和石墨烯的完美结晶格子的自动生长开始的例子,一直在毫米甚至毫米甚至毫米的模板和无纳米纳米结构阵列的模板和无模式合成厘米鳞片。我们将概述等离子体的关键能够在各个刻度上驱动这些过程,主要聚焦在表面上的等离子体诱导的电场或等离子体纳米结构护套,以及充电相关的效果。展望部分总结了等离子体驱动的自组织的优势,并概述了本领域发展的主要挑战和机会。

著录项

  • 来源
    《Materials Horizons》 |2018年第5期|共35页
  • 作者单位

    Natl Aerosp Univ KhAI Kharkov Ukraine;

    Nanyang Technol Univ NIE Plasma Sources &

    Applicat Ctr Singapore Singapore;

    Queensland Univ Technol Sch Chem Phys Mech Engn Brisbane Qld 4000 Australia;

    Nanyang Technol Univ NIE Plasma Sources &

    Applicat Ctr Singapore Singapore;

    Nanyang Technol Univ NIE Plasma Sources &

    Applicat Ctr Singapore Singapore;

    Nanyang Technol Univ NIE Plasma Sources &

    Applicat Ctr Singapore Singapore;

    Chongqing Univ Technol Coll Chem &

    Chem Engn 69 Hongguang Rd Chongqing 400054 Peoples R China;

    Dutch Inst Fundamental Energy Res Nieuwegein Netherlands;

    Nanyang Technol Univ NIE Plasma Sources &

    Applicat Ctr Singapore Singapore;

    Queensland Univ Technol Sch Chem Phys Mech Engn Brisbane Qld 4000 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号