首页> 外文期刊>Advances in Adaptive Data Analysis >CIRCULAR INSTANTANEOUS FREQUENCY
【24h】

CIRCULAR INSTANTANEOUS FREQUENCY

机译:圆形瞬时频率

获取原文
获取原文并翻译 | 示例
           

摘要

This work defines the unique instantaneous frequency (IF) of an arbitrary time signal to be the circular instantaneous frequency (cIF) of the curvature radius of the signal's trajectory on the phase plane, where the signal's conjugate part is obtained from Hilbert transform (HT). Because a general signal of a dynamical system of multiple degrees of freedom contains multiple modal vibrations, its cIF varies dramatically and is not useful for system identification and other applications. If the signal is decomposed into modal vibration components without moving average, each component has no local extrema within each fundamental period and no local loops on the phase plane, each component's referred instantaneous frequency (rIF) with respect to the origin on the phase plane may be non-circular but is always non-negative, and the time-varying rIF and referred instantaneous amplitude (rIA) are convenient for combining the use of perturbation analysis for system identification. The empirical mode decomposition (EMD) of Hilbert-Huang transform (HHT) is valuable for decomposing a general nonlinear nonstationary signal into zero-mean intrinsic mode functions (IMFs), and HT enables accurate calculation of rIF and rIA of each IMF. Although the concept of circular frequency cannot be used for signal decomposition, it enables the development of time-domain-only techniques for online frequency tracking. A 5-point frequency tracking method is developed to eliminate the incapability of the original 4-point Teager-Kaiser algorithm (TKA) for frequency tracking of signals with moving averages. Moreover, a 3-point conjugate-pair decomposition (CPD) method is derived based on circle-fitting using a pair of conjugate harmonic functions. It is shown that both CPD and TKA are based on the concept of circle fitting, but TKA uses finite difference and CPD uses curve fitting in numerical implementation. However, the accuracy of TKA is easily destroyed by noise because of the use of finite difference. On the other hand, because CPD is based on curve fitting, noise filtering is an implicit capability and its accuracy increases with the number of processed data points. The rIF from HHT and the cIF from CPD and TKA are different by definition. Moreover, because the instantaneous frequency and amplitude are assumed to be constant in CPD and TKA, the cIF from CPD and TKA also deviates from the exact cIF.
机译:这项工作将任意时间信号的唯一瞬时频率(IF)定义为相平面上信号轨迹曲率半径的圆形瞬时频率(cIF),其中信号的共轭部分从希尔伯特变换(HT)获得。由于具有多个自由度的动态系统的一般信号包含多个模态振动,因此其cIF会发生很大变化,因此对系统识别和其他应用没有用。如果将信号分解为模态振动分量而没有移动平均,则每个分量在每个基本周期内都没有局部极值,并且在相平面上没有局部环路,则每个分量相对于相平面上的原点的参考瞬时频率(rIF)可能时变的rIF和参考瞬时振幅(rIA)便于将扰动分析与系统识别相结合。 Hilbert-Huang变换(HHT)的经验模式分解(EMD)对于将一般的非线性非平稳信号分解为零均值固有模式函数(IMF)很有用,并且HT能够精确计算每个IMF的rIF和rIA。尽管不能将循环频率的概念用于信号分解,但它可以开发仅时域的技术来进行在线频率跟踪。开发了一种5点频率跟踪方法,以消除原始的4点Teager-Kaiser算法(TKA)无法对具有移动平均值的信号进行频率跟踪的能力。此外,基于圆拟合使用一对共轭谐波函数推导了三点共轭对分解(CPD)方法。结果表明,CPD和TKA都是基于圆拟合的概念,但是TKA在数值实现中使用了有限差分,而CPD使用了曲线拟合。但是,由于使用有限差分,因此TKA的精度很容易被噪声破坏。另一方面,由于CPD基于曲线拟合,因此噪声过滤是一种隐式功能,其精度随处理数据点的数量而增加。根据定义,HHT的rIF和CPD和TKA的cIF不同。此外,由于在CPD和TKA中假定瞬时频率和幅度是恒定的,因此CPD和TKA的cIF也偏离了精确的cIF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号