首页> 外文期刊>Annals of the American Thoracic Society >Predicting the Physical Stability of Amorphous Tenapanor Hydrochloride Using Local Molecular Structure Analysis, Relaxation Time Constants, and Molecular Modeling
【24h】

Predicting the Physical Stability of Amorphous Tenapanor Hydrochloride Using Local Molecular Structure Analysis, Relaxation Time Constants, and Molecular Modeling

机译:用局部分子结构分析,弛豫时间常数和分子建模预测盐酸无定形Tenapanor盐酸盐的物理稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The conformational flexibility of organic molecules introduces more structural options for crystallization to occur but has potential complications, such as, reduced crystallization tendency and conformational polymorphism. Although a variety of energetically similar conformers could be anticipated, it is extremely difficult to predict the crystal conformation for conformationally flexible molecules. The present study investigates differences in thermodynamic parameters for the free base, c-FB, and an amorphous dihydrochloride salt, a-Di-HCl, of a conformationally flexible drug substance, tenapanor (RDX5791). A variety of complementary techniques such as, thermal analysis, powder X-ray diffraction (PXRD), and molecular modeling were used to assess the thermodynamic properties and the propensity of crystallization for a-FB and a-Di-HCl, tenapanor. Molecular modeling and total scattering measurements suggested that the a-Di-HCl salt exists in an open elongated state with local 1D stacking, which extends only to the first nearest neighbor, while the a-FB shows local stacking extending to the third nearest neighbor. The overall relaxation behavior, which typically is an indicator for physical stability, as measured by modulated temperature differential scanning calorimetry and PXRD suggested a nontypical dual relaxation process for the dihydrochloride salt form. The first relaxation was fast and occurred on warming from the quench conditions without any thermal annealing, while the second relaxation step followed a more traditional glass relaxation model, exhibiting an infinite relaxation time. Similar analysis for the a-FB suggested a comparatively shorter relaxation time (about 19 days) that results in its rapid crystallization. This observation is further validated with the extensive amount of physical stability data collected for the a-Di-HCl salt form of tenapanor under accelerated and stress stability conditions, as well as long-term storage for more than 3 years that show no change in its amorphous state.
机译:有机分子的构象柔韧性引入了更加结晶的结构选择,但具有潜在的并发症,例如结晶趋势和构象多态性降低。尽管可以预期各种能量相似的符合特,但是预测柔性柔性分子的晶体构象是极其困难的。本研究研究了游离碱,C-FB和无定形二羟氯盐,A-DI-HCl,Tenapanor(RDX5791)的热力学参数的差异。各种互补技术,如热分析,粉末X射线衍射(PXRD)和分子建模,用于评估A-FB和A-Di-HCl,Tenapanor的热力学性质和结晶的倾向。分子建模和总散射测量表明,A-DI-HCl盐存在于具有局部1D堆叠的开口细长状态中,其仅延伸到第一最近邻居,而A-FB示出了延伸到第三最近邻居的局部堆叠。通过调制温差差示扫描量热法测量的整体弛豫行为,通常是物理稳定性的指示器,并且PXRD表明了用于二盐酸盐形式的非典型双弛豫方法。第一弛豫速度快速,在没有任何热退火的情况下从淬火条件升温时发生,而第二个松弛步骤遵循更传统的玻璃松弛模型,呈现无限的弛豫时间。类似的A-FB的类似分析表明弛豫时间相对较短(约19天),导致其快速结晶。该观察进一步验证了在加速和应力稳定条件下为Tenapanor的A-Di-HCl盐形式收集的广泛的物理稳定性数据,以及长期储存超过3年,显示其没有变化非晶态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号